Termodinámica de agujeros negros. Introducción a la concepción de entropía de acuerdo con la segunda ley generalizada.

dc.contributor.advisorCruz Bonilla, Yesid Javierspa
dc.contributor.authorArenas Beltrán, Juan Sebastiánspa
dc.date.accessioned2016-07-28T13:42:44Z
dc.date.accessioned2017-12-12T21:56:52Z
dc.date.available2016-07-28T13:42:44Z
dc.date.available2017-12-12T21:56:52Z
dc.date.issued2014
dc.description.abstractLa investigación teórica acerca de los agujeros negros y su relación con la termodinámica han logradoplantear toda una rama de las ciencias que no podría ser desapercibida, no solo por su impresionanteformulación, sino por sus impactantes resultados teóricos tales como: la entropía de los agujeros negros,la radiación de Hawking y la inquietante relación con la teoría de la información, entre otros. Al ser latermodinámica una visión física del universo, las connotaciones ya conocidas acerca de esta y de sus leyes fundamentales pueden ser entendidas de manera profunda y alternativa con un ejemplo físicamente extremo: los agujeros negros; regiones particulares del espacio-tiempo en donde la gravedad es tanintensa, que ni siquiera la luz puede escapar de allí. En el presente trabajo se abordan e identifican demanera introductoria, las relaciones termodinámicas en la relatividad general, en particular, los agujeros negros.spa
dc.description.degreelevelTesis de pregradospa
dc.description.degreenameLicenciado en Físicaspa
dc.formatPDFspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameinstname:Universidad Pedagógica Nacionalspa
dc.identifier.instnameinstname:Universidad Pedagógica Nacionalspa
dc.identifier.otherTE-17201
dc.identifier.reponamereponame: Repositorio Institucional UPNspa
dc.identifier.repourlrepourl: http://repositorio.pedagogica.edu.co/
dc.identifier.urihttp://hdl.handle.net/20.500.12209/2087
dc.language.isospa
dc.publisherUniversidad Pedagógica Nacionalspa
dc.publisher.facultyFacultad de Ciencia y Tecnologíaspa
dc.publisher.programLicenciatura en Físicaspa
dc.relation.referencesSchwarzschild, K., Uber das Gravitationsfeld eines Massenpunktes nach der Eins- ¨ teinschen Theorie. Sitzungsberichte der K¨oniglich Preussischen Akademie der Wissenschaften 189-196, 1916
dc.relation.referencesDinverno, R., Introducing Einstein’s Relativity. 5 ed. : Oxford University Press, 1998
dc.relation.referencesWeinberg, S., Gravitation and Cosmology: Principles and Applications of The general Theory of Gravity. 1 ed.: John Wiley & Sons, Inc., 1972.
dc.relation.referencesMisner, W., Thorne S., Wheeler A., Gravitation. 3 ed. : Freeman and Company, 1973
dc.relation.referencesWald, R., General Relativity 1 ed. : The University of Chicago Press, 1984
dc.relation.referencesEddington, A.S., The Mathematical Theory of Relativity 1 ed. : Cambrish University Press, 1924.
dc.relation.referencesMammadov, G., Reissner-Nordstr¨om metric Replacement project for the final exam of the adv. electromagnetic theory II, Syracuse University NY. May 04 2009 [http: //gmammado.mysite.syr.edu/notes/RN_Metric.pdf]
dc.relation.referencesHawking, S., Ellis, G., The large scale structure of space-time 12 ed. : Cambrish University Press, 1994.
dc.relation.referencesMcMahon, D., General Relativity Demystified 1 ed. : Mc Graw-Hill Inc., 2006.
dc.relation.referencesChandrasekhar, S., The Mathematical Theory of Black Holes 1 ed.: Oxford University Press, NY, 1983.
dc.relation.referencesChandrasekhar, S., The Mathematical Theory of Black Holes 1 ed.: Oxford University Press, NY, 1983.
dc.relation.referencesA. S. Eddington, “A comparison of Whitehead’s amd Einstein’s Formulae,” Nature 113, 192 (1924).
dc.relation.referencesD. Finkelstein, “Past–future asymmetry of the gravitational field of a point particle,” Phys. Rev. 110, 965 (1958).
dc.relation.referencesM. D. Kruskal, “Maximal Extension Of Schwarzschild Metric,” Phys. Rev. 119, 1743 (1960).
dc.relation.referencesG. Szekeres, “On the singularities of a Riemannian manifold,” Publ. Mat. Debrecen 7, 285-301, (1960).
dc.relation.referencesH. Reissner, “Uber die Eigengravitation des elektrischen Felds nach den Einsteinschen ¨ Theorie,” Ann. Phys. bf 50, 106-120 (1916).
dc.relation.referencesG. Nordstr¨om, “On the energy of the gravitational field in Einstein’s theory,” Proc. Kon. Ned. Akad. Wet. 20, 1238-1245 (1918).
dc.relation.referencesR. P. Kerr, “Gravitational field of a spinning mass as an example of algebraically special metrics,” Phys. Rev. Lett. 11, 237 (1963).
dc.relation.referencesR. H. Boyer and R. W. Lindquist, “Maximal analytic extension of the Kerr metric,” J. Math. Phys. 8, 265-281, (1967).
dc.relation.references] E. T. Newman and A.I. Janis, “Note on the Kerr Spinning-Particle Metric,” J. Math. Phys. 6, 915-7 (1965).
dc.relation.referencesR. C. Henry, “Kretschman Scalar for a Kerr-Newman Black Hole,” The Astrophysical Journal, (1999). [http://arxiv.org/abs/astro-ph/9912320v1
dc.relation.referencesJ. Lense and H. Thirring, “The Influence of the Self-Rotation of Central Bodies on the Movemens of the Planets and the Moon According to Einsteins Theory of Gravitation” Physicalische Zeitschrift, 19, 156-163, (1918).
dc.relation.referencesE. T. Newman, E. Couch, K. Chinnapared, A. Exton, A. Prakash and R. Torrence “Metric of a rotating charged mass,” J. Math. Phys. 6, 918-9 (1965).
dc.relation.referencesR. Penrose, “Gravitational collapse and space-time singularities,” Phys. Rev. Lett. 57, 57-59 (1965)
dc.relation.referencesR. Penrose, “Gravitational collapse: the role of general relativity,” Riv. Nuo. Cim. numero speziale I, 257 (1969) reprinted in Gen. Rel. and Grav. 34, 1141 (2002).
dc.relation.referencesS. Hawking, R. Penrose, “The Singularities of Gravitational Collapse and Cosmology,” Proc. Roy. Soc. Lond. A. 314, 529-48 (1970)
dc.relation.referencesR. Penrose and R. M. Floyd, “Extraction of rotational energy from a black hole,” Nature, Phys. Schi. 229, 177-179 (1971).
dc.relation.referencesD. Christodoulou, “Reversible and irreversible transformations in black hole physics,” Phys. Rev. Lett. 25, 1596-7 (1970).
dc.relation.referencesD. Christodoulou and R. Ruffini, “Reversible transformations of a charged black hole,” Phys. Rev. D 4, 3552-5 (1971).
dc.relation.referencesS. W. Hawking, “Gravitational radiation from colliding black holes,” Phys. Rev. Lett. 26, 1344-6 (1971).
dc.relation.referencesJ. D. Bekenstein “Black holes and the second law,” Lett. Nuo. Cim. 4, 737-740 (1972).
dc.relation.referencesL. Smarr, “Mass Formula for Kerr Black Holes,” Phys. Rev. Lett. 30, 71-3 (1973).
dc.relation.referencesA. Curir, M. Francaviglia “Isoareal Transformations of the Kerr-Newman Black Holes,” Acta Physica Polonica B9, (1978).
dc.relation.referencesJ. M. Bardeen, B. Carter and S. W. Hawking, “The Four laws of black hole mechanics,” Commun. Math. Phys. 31, 161 (1973).
dc.relation.referencesReif, F., Fundamentals of Statistical and Thermal Physics Students ed.: Mc Graw-Hill Inc., 1965.
dc.relation.referencesAdkins, C.J., Equilibrium Thermodynamics 3 ed.: Cambrish University Press, 1988
dc.relation.referencesHawking, S. W., Israel, W., Three Hundred Years of Gravitation 1 ed.: Cambrish University Press, 1989.
dc.relation.referencesLandau, L. D., Lifshitz, E. M., Course of Theoretical Physics vol. 5: Statistical Physics 2 ed.: Pergamon Press, 1970.
dc.relation.referencesJ. D. Bekenstein “Black holes and Entropy,” Phys. Rev. D 7, 2333-46 (1973).
dc.relation.referencesC. E. Shannon “A Mathematical Theory of Communication,” The Bell System Technical Journal 27-I, 379-423 (1948).
dc.relation.referencesBrillouin, L., Science and Information Theory 2 ed.: Academic Press, New York, 1962.
dc.relation.referencesJ. D. Bekenstein “Generalized Second Law of Thermodynamics in Black-Hole Physics,” Phys. Rev. D 9, 3292-3300 (1974).
dc.relation.referencesS. W. Hawking, “Black Hole Explosions?,” Nature 248, 30-31(1974).
dc.relation.referencesS. W. Hawking, “Particle creation by black holes,” Commun. Math. Phys. 43, 199-220 (1975).
dc.relation.referencesG. W. Gibbons and S. W. Hawking, “Action integrals and partition functions in quantum gravity,” Phys. Rev. D 15, 2752 (1977).
dc.relation.referencesP. C. W. Davies, “Thermodynamics of Black Holes,” Rep. Prog. Phys. 41, 1313-55 (1978).
dc.relation.referencesS. W. Hawking “Black Holes and Thermodynamics,” Phys. Rev. D 13, 191-7 (1976).
dc.relation.referencesJ. D. Bekenstein “Universal Upper Bound on the Entropy-to-Energy Ratio for Bounded Systems,” Phys. Rev. D 23, 287-298 (1981).
dc.relation.referencesJ. D. Bekenstein “Energy Cost of Information Transfer,” Phys. Rev. Lett. 46, 623-6 (1981).
dc.relation.referencesSchutz, B., Gravity from the Ground up 1 ed.: Cambridge University Press, 2003.
dc.rights.accessAcceso abiertospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcereponame:Repositorio Institucional de la Universidad Pedagógica Nacionalspa
dc.sourceinstname:Universidad Pedagógica Nacionalspa
dc.subjectRelatividad generalspa
dc.subjectAgujeros negrosspa
dc.subjectTermodinámicaspa
dc.subject.lembEntropíaspa
dc.subject.lembRadiación de Hawkingspa
dc.titleTermodinámica de agujeros negros. Introducción a la concepción de entropía de acuerdo con la segunda ley generalizada.spa
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1feng
dc.type.driverinfo:eu-repo/semantics/bachelorThesiseng
dc.type.localTesis/Trabajo de grado - Monografía – Pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.type.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TE-17201.pdf
Tamaño:
1.24 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Plain Text
Descripción: