Construcción de una trayectoria hipotética de aprendizaje en torno al proceso de generalización geométrica.

dc.contributor.advisorCamargo Uribe, Leonorspa
dc.contributor.authorBocanegra González, Ingrid Ximenaspa
dc.contributor.authorDevia Ávila, María Angélicaspa
dc.date.accessioned2020-06-10T22:35:41Z
dc.date.available2020-06-10T22:35:41Z
dc.date.issued2019
dc.description.abstractEste documento es fruto de intereses adquiridos durante la formación académica y disciplinar en el programa de la Licenciatura en Matemáticas de la Universidad Pedagógica Nacional. Este trabajo descansa sobre dos pilares que son de gran importancia en la Educación Matemática: por un lado, las Trayectorias Hipotéticas de Aprendizaje; y por otro lado, la generalización, en especial la generalización geométrica. Las Trayectorias Hipotéticas de Aprendizaje han sido una herramienta importante para el desarrollo práctico e investigativo de profesores e investigadores. Por esta razón cada vez ha ido cobrando más auge en el campo de la Educación Matemática. Es un tema de interés que debería ser abordado en la formación de profesores de matemáticas. Es importante que como profesoras en formación tengamos la experiencia de construir trayectorias hipotéticas y ofrezcamos posibilidades para la gestión del aprendizaje con indicaciones sobre cómo los niños aprenden matemáticas y cómo podemos intervenir y generar apoyo en los conocimientos matemáticas que se trabajen. El proceso de generalización es considerado uno de los procesos de importancia en el desarrollo del pensamiento matemático y uno de los principales retos en el estudio de las matemáticas. La utilidad en la resolución de problemas matemáticos hace que sea uno de los procesos inevitables de abordar. En diferentes documentos encontramos cantidad de definiciones sobre generalización, algunas de estas definiciones son propuestas por Poyla (1965), Radford (1997), Mora (2012), Vergel (2016), pero ninguna específica sobre el proceso de generalización geométrica. En este documento presentamos una definición de generalización geométrica, producto de una recopilación de distintas fuentes. El objetivo del trabajo de grado fue construir una THA sobre el proceso de generalización geométrica para que estudiantes de 10 a 13 años descubran una propiedad de una figura geométrica. Para llevarlo a cabo seguimos un proceso que se consigna en siete capítulos.spa
dc.description.degreelevelTesis de pregradospa
dc.description.degreenameLicenciado en Matemáticasspa
dc.formatPDFspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameinstname:Universidad Pedagógica Nacionalspa
dc.identifier.instnameinstname:Universidad Pedagógica Nacionalspa
dc.identifier.otherTE-24055
dc.identifier.reponamereponame: Repositorio Institucional UPNspa
dc.identifier.repourlrepourl: http://repositorio.pedagogica.edu.co/
dc.identifier.urihttp://hdl.handle.net/20.500.12209/11913
dc.language.isospa
dc.publisherUniversidad Pedagógica Nacionalspa
dc.publisher.facultyFacultad de Ciencia y Tecnologíaspa
dc.publisher.programLicenciatura en Matemáticasspa
dc.relation.referencesArzarello, F., Olivero, F., Domingo, P., y Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. ZDM Vol. 34 (3), 66-72.
dc.relation.referencesBressan, A., y Gallego, M. (2010). El proceso de matematización progresiva en el tratamiento de patrones. Correo del maestro, N° 168
dc.relation.referencesCamargo, L. (en evaluación). Estrategia de investigación – entrevista basadas en tareas. Universidad Pedagógica Nacional. Bogotá, Colombia
dc.relation.referencesCañadas, M., Deulofeu, J., Figueiras, L., Reid, D., y Yevdokimov, O. (2008). Perspectivas teóricas en el proceso de elaboración de conjeturas e implicaciones para la práctica: Tipos y pasos. Enseñanza de las ciencias, 26(3), 431–444.
dc.relation.referencesCárcamo, A. (2017). Una innovación docente basada en los modelos emergentes y la modelización matemática para conjunto generador y espacio generado [Tesis doctoral]. Universidad Autónoma de Barcelona, Bellaterra-España.
dc.relation.referencesClements, D., y Sarama, J. (2004). Learning Trajectories in Mathematics Education, Mathematical Thinking and Learning, 6(2), 81–89
dc.relation.referencesClements, D., y Sarama, J. (2009). Learning and Teaching Early Math: The Learning Trajectories Approach. New York, NY: Routledge
dc.relation.referencesGarcía, S.S. (2011). Rutas de acceso a la generalización como estrategia de resolución de problemas utilizada por estudiantes de 13 años [Trabajo de maestría]. Universidad pedagógica Nacional, Bogotá-Colombia
dc.relation.referencesGiaquinta, M., y Modica, G. (2012). Mathematical analysis: Functions of one variable. New York: Springer Science y Business Media. Recuperado de http://www.scielo.br/pdf/ep/v44/1517-9702-ep-44-e181974.pdf
dc.relation.referencesGómez, P., y Lupiáñez, J.L. (2007). Trayectorias Hipotéticas de Aprendizaje en la formación inicial de profesores de matemáticas de secundaria. PNA, I(2), 79-98
dc.relation.referencesIvars, P., Buforn, A., y Llinares, S. (2016). Características del aprendizaje de estudiantes para maestro de una trayectoria de aprendizaje sobre las fracciones para apoyar el desarrollo de la competencia “mirar profesionalmente”. Acta Scientiae, v.18, n.4, Edição Especial,48-64.
dc.relation.referencesLeón, O. L., Díaz Celis, F., y Guilombo, M. (2014). Diseños didácticos y trayectorias de aprendizaje de la geometría de estudiantes sordos, en los primeros grados de escolaridad. Revista Latinoamericana de Etnomatemática, 7(2), 9-28
dc.relation.referencesMartínez, F. J., Llinares, S., y Torregrosa, G. (2015). Propuestas de enseñanza centradas en una trayectoria de aprendizaje de un contenido matemático usando materiales didácticos. Universidad de Alicante
dc.relation.referencesMason, J., Graham, A., Pimm, D., y Gowar, N. (1988). Rutas y raíces hacia el álgebra (C. Agudelo, Ed. y Trad.). Tunja, Colombia: Universidad Pedagógica y Tecnológica de Colombia. (Trabajo original publicado en 1985).
dc.relation.referencesMEN. (1998). Lineamientos Curriculares de Matemáticas. Bogotá: Colombia
dc.relation.referencesMEN. (2006). Estándares Básicos de Competencias en Matemáticas. Bogotá: Colombia
dc.relation.referencesMora, L (2012). Álgebra en los primeros niveles escolares. Universidad Pedagógica Nacional, Bogotá-Colombia
dc.relation.referencesOrts, A., Llinares, S., y Boigues, F. J. (2018). Trayectorias de aprendizaje del concepto de recta tangente en alumnos de Bachillerato. Enseñanza de las ciencias, 36(3), 121-140
dc.relation.referencesPerry, P., Camargo, L., y Samper, C (2017). Puntos medios en triángulo: un caso de construcción de significado y mediación semiótica. Revista Latinoamericana de Investigación Matemática Educativa, 22 (3), 309-332
dc.relation.referencesRodríguez, L. (2016). Trayectoria hipotética de aprendizaje: aprendizaje de las operaciones suma y resta en aulas inclusivas con incorporación tecnológica [Trabajo de Licenciatura]. Universidad Distrital Francisco José De Caldas, Bogotá
dc.relation.referencesSicuamia, G. (2017). Trayectorias de Aprendizaje en la orientación espacial para la formación de profesores de básica primaria en ejercicio [Tesis de maestría]. Universidad Distrital Francisco José De Caldas, Bogotá
dc.relation.referencesSimon, M. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114-145.
dc.relation.referencesSimon, M., y Tzur, R. (2004). Explicating the Role of Mathematical Tasks in Conceptual Learning: An Elaboration of the Hypothetical Learning Trajectory, Mathematical Thinking and Learning, 6:2, 91-104
dc.relation.referencesTzur, R. (1999). An integrated study of children’s construction of improper fractions and the teacher’s role in promoting that learning. Journal for Research in Mathematics Education, 30, 390–416.
dc.relation.referencesTzur, R. (2000). An integrated research on children’s construction of meaningful, symbolic, partitioning- related conceptions, and the teacher’s role in fostering that learning. Journal of Mathematical Behavior, 18(2), 123–147
dc.relation.referencesTzur, R. (2019). Hypothetical Learning Trajectory HLT: A Lens on Conceptual Transition between Mathematical “Markers”. In Siemon, D., Barkatsas, T., y Seah, R. (Eds.), Researching and Using Progressions (Trajectories) in Mathematics Education: Vol. 3 (pp. 56-74). Leiden, The Netherlands: Brill
dc.relation.referencesTzur, R., y Simon, M. (1999). Postulating relations between stages of knowing and types of tasks in mathematics teaching: A constructivist perspective. In Hitt, F y Santos, M (Eds.), Twentieth-First Annual Meeting North American Chapter of the International Group for the Psychology of Mathematics Education: Vol. 2 (pp. 805–810). Cuernavaca, México: ERIC.
dc.relation.referencesVergel, R. (2016). Sobre la emergencia del pensamiento algebraico temprano y su desarrollo en la educación primaria [Tesis doctoral]. Universidad Distrital Francisco José de Caldas. Bogotá, Colombia
dc.relation.referencesEsquinas, A. (2008). Dificultades de aprendizaje del lenguaje algebraico: del símbolo a la formalización algebraica. Aplicación a la práctica docente [Tesis doctoral]. Departamento de Didáctica y Organización Escolar, Facultad de Educación. Universidad Complutense de Madrid, Madrid, España.
dc.relation.referencesPolya, G. (1965). Cómo plantear y resolver problemas (XIX Reimp. 1995) [título original: How To Solve It?]. México: Trillas
dc.rights.accessAcceso abiertospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcereponame:Repositorio Institucional de la Universidad Pedagógica Nacionalspa
dc.sourceinstname:Universidad Pedagógica Nacionalspa
dc.subjectTrayectoria Hipotética de Aprendizaje (THA)spa
dc.subjectGeneralizationspa
dc.subjectGeneralizaciónspa
dc.subjectGeneralización geométricaspa
dc.subjectConjeturaspa
dc.titleConstrucción de una trayectoria hipotética de aprendizaje en torno al proceso de generalización geométrica.spa
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1feng
dc.type.driverinfo:eu-repo/semantics/bachelorThesiseng
dc.type.localTesis/Trabajo de grado - Monografía – Pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.type.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TE-24055.pdf
Tamaño:
2.59 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
TE-24055 LIC. DE USO.pdf
Tamaño:
1.55 MB
Formato:
Adobe Portable Document Format
Descripción: