Saber suficiente no es suficiente : comportamientos metacognitivos al resolver problemas de demostración con el apoyo de la geometría dinámica.

dc.contributor.authorSua Flórez, Camilospa
dc.date.accessioned2021-08-02T16:54:46Z
dc.date.available2021-08-02T16:54:46Z
dc.date.issued2019-03-05
dc.description.abstractLos problemas de demostración demandan poner en juego distintos conocimientos y habilidades instrumentales cuando se cuenta con apoyo de la geometría dinámica. Sin embargo, como se muestra en este documento, el conjunto de conocimientos de un individuo y su grado de instrumentalización del software no son los únicos aspectos relevantes en el proceso de resolución o en la naturaleza de la respuesta obtenida. Apoyados en dos grupos de estudiantes para profesor de matemáticas con un nivel de formación matemática distinta, mostramos qué aspectos metacognitivos como el control, la regulación y la evaluación de las acciones ejecutadas se convierten en elementos que pueden llevar a un grupo, con un conocimiento matemático reducido, a obtener mejores resultados que un grupo con un conocimiento profundo de la disciplina. Mostramos cómo el trabajo grupal y el uso de la geometría dinámica inciden positivamente en el proceso de resolución y favorecen aspectos de orden metacognitivo.spa
dc.description.abstractenglishProof problems demand to put into play different knowledge and instrumental skills when it is suppor-ted by dynamic geometry. However, as we show in this paper, an individual’s set of knowledge and the degree of instrumentalization of the software are not the only relevant aspects in the resolution process or in the nature of the response obtained. Supported in two groups of mathematics pre-service teacher with a different level of mathematical training, we show that metacognitive aspects such as control, regulation and evaluation of executed actions become elements that can lead to a group, with mathematical knowledge reduced, to obtain better results than a group with a deep knowledge of the discipline. We show how group work and the use of dynamic geometry have a positive effect on the resolution process and promote metacognitive aspects.eng
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypetext/xmlspa
dc.identifierhttps://revistas.upn.edu.co/index.php/TED/article/view/9838
dc.identifier10.17227/ted.num45-9838
dc.identifier.issn2323-0126
dc.identifier.issn2665-3184
dc.identifier.urihttp://hdl.handle.net/20.500.12209/16215
dc.language.isospa
dc.publisherEditorial Universidad Pedagógica Nacionalspa
dc.relationhttps://revistas.upn.edu.co/index.php/TED/article/view/9838/7147
dc.relationhttps://revistas.upn.edu.co/index.php/TED/article/view/9838/8636
dc.relation.referencesBaxter, P. y Jack, S. (2008). Qualitative case study methodology: Study design and implementation for novice researchers. The Qualitative Report, 13(4), 544-559. https://doi.org/http://dx.doi.org/9771682584003-32963eng
dc.relation.referencesCai, J. (1994). A protocol-analytic study of metacognition in mathematical problem solving. Mathematics Education Research Journal, 6(2), 166-183. https://doi.org/10.1007/BF03217270eng
dc.relation.referencesChiu, M. M., Jones, K. A. y Jones, J. L. (2013). Building on Schoenfeld’s studies of metacognitive control towards social metacognitive control. En Y. Li y J. Moschkovich (eds.), Proficiency and beliefs in learning and teaching mathematics: Learning from Alan Schoenfeld and Günter Törner (pp. 69-85). Róterdam: Sense Publishers. https://doi.org/10.1007/978-94-6209-299-0eng
dc.relation.referencesErbas, A. K. y Okur, S. (2012). Researching students’ strategies, episodes, and metacognitions in mathematical problem solving. Quality and Quantity, 46(1), 89-102. https://doi.org/10.1007/s11135-010-9329-5eng
dc.relation.referencesFuringhetti, F. y Morselli, F. (2009). Every un-successful problem solver is unsuccessful in his or her own way: Affective and cognitive factors in proving. Educational Studies in Mathematics, 70(1), 71-90. https://doi.org/10.1007/s10649-008-9134-4eng
dc.relation.referencesHanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in Mathematics, 44(1-3), 5-23. https://doi.org/10.1023/A:1012737223465eng
dc.relation.referencesKarsli, T. A. (2015). Relation among meta-cogntition level, decision making, problem solving and locus of control in a Turkish adolescent population. Procedia–Social and Beha-vioral Sciences, 205, 35-42. https://doi.org/10.1016/j.sbspro.2015.09.008eng
dc.relation.referencesKim, Y. R., Park, M. S., Moore, T. J. y Varma, S. (2013). Multiple levels of metacognition and their elicitation through complex problem-solving tasks. Journal of Mathema-tical Behavior, 32(3), 377-396. https://doi.org/10.1016/j.jmathb.2013.04.002eng
dc.relation.referencesKoichu, B. y Leron, U. (2015). Proving as problem solving: The role of cognitive decoupling. Journal of Mathematical Behavior, 40, 233-244. https://doi.or-g/10.1016/j.jmathb.2015.10.005eng
dc.relation.referencesKuzle, A. (2015). Nature of metacognition in a dynamic geometry environment.Lumat, 3(5), 627-646.eng
dc.relation.referencesLin, X. y Sullivan, F. R. (2008). Computer contexts for supporting metacognitive learning. En J. Voogot y G. Knezek (eds.), International handbook of information technology in primary and secondary education (pp. 281-298). Boston: Springer. https://doi.org/10.1007/978-0-387-73315-9_17eng
dc.relation.referencesMarrades, R. y Gutiérrez, Á. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics, 44(1-3), 87-125. https://doi.org/10.1023/A:1012785106627eng
dc.relation.referencesNunokawa, K. (2010). Proof, mathematical problem-solving, and explanation in mathematics teaching. En G. Hanna, H. N. Jahnke y H. Pulte (eds.), Explanation and proof in mathematics: philosophical and educational perspectives (pp. 223-236). Boston: Springer. https://doi.org/10.1007/978-1-4419-0576-5_15eng
dc.relation.referencesPerry, P., Samper, C., Camargo, L. y Molina, O. (2013). Innovación en un aula de geometría de nivel universitario. En Geometría plana: un espacio de aprendizaje(pp. 11-34). Bogotá: Fondo Editorial Universidad Pedagógica Nacional.spa
dc.relation.referencesRaes, A., Schellens, T., De Wever, B. y Benoit, D. F. (2016). Promoting metacognitive regulation through collaborative problem solving on the web: When scripting does not work. Computers in Human Behavior, 58, 325-342. https://doi.or-g/10.1016/j.chb.2015.12.064eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.rights.creativecommonsAttribution-NonCommercial 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0
dc.sourceTecné, Episteme y Didaxis: TED; Núm. 45 (2019): ene-jun; 121-142spa
dc.sourceTecné, Episteme y Didaxis: TED; No. 45 (2019): ene-jun; 121-142spa
dc.sourceTecné, Episteme y Didaxis: TED; n. 45 (2019): ene-jun; 121-142spa
dc.subjectGeometría dinámicaspa
dc.subjectResolución de problemasspa
dc.subjectProblemas de demostraciónspa
dc.subjectMetacogniciónspa
dc.subject.keywordsProblem solvingeng
dc.subject.keywordsDynamic geometryeng
dc.subject.keywordsMetacognitioneng
dc.subject.keywordsProof problemseng
dc.titleSaber suficiente no es suficiente : comportamientos metacognitivos al resolver problemas de demostración con el apoyo de la geometría dinámica.spa
dc.title.translatedKnowing enough is not enough: metacognitive behaviors when solving proof problems with the support of dynamic geometry.eng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.localArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersion

Archivos