Sistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador.

dc.contributor.advisorPeña Morales, Davidspa
dc.contributor.authorFayad Sierra, Jorgespa
dc.date.accessioned2021-11-02T20:43:34Z
dc.date.available2021-11-02T20:43:34Z
dc.date.issued2021
dc.description.abstractLa estimación subjetiva de medidas antropométricas, como la estatura y la masa corporal a personas postradas en cama, suele tener inexactitudes en la valoración de tales magnitudes, lo que trae como consecuencia que en algunos casos halla errores en la formulación de fármacos o parametrización de ventiladores mecánicos; esto puede poner en riesgo la vida de los pacientes. Por lo anterior, aprovechando las bondades de la visión por computador, se plantea el proyecto Sistema De Valoración Antropométrica Para Estimar La Masa De Personas Postradas En Cama Basado En Visión Por Computador, con la intención de hacer una primera versión de un instrumento que estime estatura, envergadura, altura a la rodilla, perímetros de brazo, pantorrilla, cintura; así como la masa corporal del paciente. El sistema se desarrolló bajo un escenario controlado en términos de iluminación, un prototipo de estructura que sostiene un sensor Kinect V2 a una altura determinada, para capturar la imagen RGB y en profundidad de un paciente acostado y procesarlas, logrando estimar las medidas mencionadas en el párrafo anterior.spa
dc.description.abstractenglishThe subjective estimation of anthropometric measures, such as height and body mass in bedridden people, tends to have inaccuracies in the assessment of such magnitudes, hence, in some cases there are errors in drug formulation or parameterization of mechanical ventilators; this can put patients' lives at risk. Therefore, taking the benefits of computer vision, the project Anthropometric Estimation System for body Mass estimation to Bedridden People Based on Computer Vision is proposed, as an attempt to make a first version of an instrument that estimates stature, wingspan, height to the knee, arm, calf, waist perimeters; as well as the patient's body mass. The system was developed under a controlled scenario in terms of lighting, using the prototype of a structure that supports a Kinect V2 sensor at a certain height, to capture the RGB and depth images of a lying patient and process them, managing to estimate all measurements mentioned in the previous paragraph.spa
dc.description.degreelevelPregradospa
dc.description.degreenameLicenciado en Electrónicaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameinstname:Universidad Pedagógica Nacionalspa
dc.identifier.reponamereponame:Repositorio Institucional de la Universidad Pedagógica Nacionalspa
dc.identifier.repourlrepourl: http://repositorio.pedagogica.edu.co/
dc.identifier.urihttp://hdl.handle.net/20.500.12209/16555
dc.language.isospa
dc.publisherUniversidad Pedagógica Nacionalspa
dc.publisher.facultyFacultad de Ciencia y Tecnologíaspa
dc.publisher.programLicenciatura en Electrónicaspa
dc.relation.referencesantropometría | Definición | Diccionario de la lengua española | RAE - ASALE. (n.d.). Retrieved September 5, 2021, from https://dle.rae.es/antropometría
dc.relation.referencesCannon, C. P. (2000). Thrombolysis medication errors: benefits of bolus thrombolytic agents. The American Journal of Cardiology, 85(8), 17–22. https://doi.org/10.1016/S0002-9149(00)00874-2
dc.relation.referencesCook, T. S., Couch, G., Couch, T. J., Kim, W., & Boonn, W. W. (2013a). Using the microsoft kinect for patient size estimation and radiation dose normalization: Proof of concept and initial validation. Journal of Digital Imaging, 26(4), 657–662. https://doi.org/10.1007/s10278-012-9567-2
dc.relation.referencesCook, T. S., Couch, G., Couch, T. J., Kim, W., & Boonn, W. W. (2013b). Using the microsoft kinect for patient size estimation and radiation dose normalization: Proof of concept and initial validation. Journal of Digital Imaging, 26(4), 657–662. https://doi.org/10.1007/s10278-012-9567-2
dc.relation.referencesCubison, T. C. S. (2005). So much for percentage, but what about the weight? Emerg Med J, 22, 643–645. https://doi.org/10.1136/emj.2003.011304
dc.relation.referencesEspa, E. (2003). Diccionario Mosby de Medicina , Enfermería y Ciencias de la Salud , 6a ed . Códex del Laboratorio Clínico . Indicaciones e interpretación de los exámenes de laboratorio. 1(2), 149–150. https://books.google.com/books/about/Diccionario_Mosby.html?hl=es&id=coYUp744m5kC
dc.relation.referencesFitriyah, H., & Edhi Setyaw, G. (2018a). Automatic Estimation of Human Weight From Body Silhouette Using Multiple Linear Regression. Proceeding of the Electrical Engineering Computer Science and Informatics, 5(5). https://doi.org/10.11591/eecsi.v5i5.1688
dc.relation.referencesFitriyah, H., & Edhi Setyaw, G. (2018b). Automatic Estimation of Human Weight From Body Silhouette Using Multiple Linear Regression. Proceeding of the Electrical Engineering Computer Science and Informatics, 5(5). https://doi.org/10.11591/eecsi.v5i5.1688
dc.relation.referencesForschungsberichte in Robotik, W., Schilling Nüchter, K. A., & Wuerzburg Research Notes, U. (n.d.). Christian Pfitzner Band 18 Visual Human Body Weight Estimation with Focus on Clinical Applications. https://opus.bibliothek.uni-wuerzburg.de
dc.relation.referencesGevers, T., & Smeulders, A. (2016). Foreword. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9914 LNCS, V. https://doi.org/10.1007/978-3-319-46493-0
dc.relation.referencesGonzalez, R. C., Woods, R. E., & Masters, B. R. (2009). Digital Image Processing, Third Edition. Journal of Biomedical Optics, 14(2), 029901. https://doi.org/10.1117/1.3115362
dc.relation.referencesJiang, M., & Guo, G. (2019a). Body Weight Analysis from Human Body Images. IEEE Transactions on Information Forensics and Security, 14(10), 2676–2688. https://doi.org/10.1109/TIFS.2019.2904840
dc.relation.referencesJiang, M., & Guo, G. (2019b). Body Weight Analysis from Human Body Images. IEEE Transactions on Information Forensics and Security, 14(10), 2676–2688. https://doi.org/10.1109/TIFS.2019.2904840
dc.relation.referencesKhan, A. I., & Al-Habsi, S. (2020). Machine Learning in Computer Vision. Procedia Computer Science, 167. https://doi.org/10.1016/j.procs.2020.03.355
dc.relation.referencesKocabas, M., Athanasiou, N., & Black, M. J. (n.d.). VIBE: Video Inference for Human Body Pose and Shape Estimation. https://github.com/mkocabas/VIBE
dc.relation.referencesKocabas, M., Athanasiou, N., & Black, M. J. (2019). VIBE: Video inference for human body pose and shape estimation. ArXiv, 5253–5263.
dc.relation.referencesLabati, R. D., Genovese, A., Piuri, V., & Scotti, F. (2012a). Two-view contactless fingerprint acquisition systems: A case study for clay artworks. BioMS 2012 - 2012 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, Proceedings, 9–16. https://doi.org/10.1109/BIOMS.2012.6345775
dc.relation.referencesLabati, R. D., Genovese, A., Piuri, V., & Scotti, F. (2012b). Two-view contactless fingerprint acquisition systems: A case study for clay artworks. BioMS 2012 - 2012 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, Proceedings, 9–16. https://doi.org/10.1109/BIOMS.2012.6345775
dc.relation.referencesLeibe, B., Matas, J., Sebe, N., & Welling, M. (Eds.). (2016). Computer Vision – ECCV 2016 (Vol. 9906). Springer International Publishing. https://doi.org/10.1007/978-3-319-46475-6
dc.relation.referencesLifshitz, I., Fetaya, E., & Ullman, S. (2016). Human pose estimation using deep consensus voting. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9906 LNCS, 246–260. https://doi.org/10.1007/978-3-319-46475-6_16
dc.relation.referencesLin, C. B., Dong, Z., Kuan, W. K., & Huang, Y. F. (2021). A framework for fall detection based on openpose skeleton and lstm/gru models. Applied Sciences (Switzerland), 11(1), 1–20. https://doi.org/10.3390/app11010329
dc.relation.referencesLiu, Y., Sowmya, A., & Khamis, H. (2018a). Single camera multi-view anthropometric measurement of human height and mid-upper arm circumference using linear regression. PLoS ONE, 13(4), 1–22. https://doi.org/10.1371/journal.pone.0195600
dc.relation.referencesLu, J. M., & Wang, M. J. J. (2008). Automated anthropometric data collection using 3D whole body scanners. Expert Systems with Applications, 35(1–2), 407–414. https://doi.org/10.1016/j.eswa.2007.07.008
dc.relation.referencesMadrazo Pérez, M., & Torres Manrique, B. (n.d.). Gestión de los Servicios en Enfermería
dc.relation.referencesMinisterio de salud de Colombia. (2020, June 18). Se define valores de referencia a pagar por servicios UCI de covid-19. https://www.minsalud.gov.co/Paginas/Se-define-valores-de-referencia-a-pagar-por-servicios-UCI-de-covid-19.aspx
dc.relation.referencesPaar, A., Rüther, M., Bischof, H., Skrabal, F., Pirker, K., & Pichler, G. (2009). Human Body Volume Estimation in a Clinical Environment Combyn ECG Segmental Impedance Spectroscopy View project Glucose Monitoring View project Katrin Santner Human Body Volume Estimation in a Clinical Environment. https://www.researchgate.net/publication/228541158
dc.relation.referencesPfitzner, C., May, S., Merkl, C., Breuer, L., Kohrmann, M., Braun, J., Dirauf, F., & Nuchter, A. (2015a). Libra3D: Body weight estimation for emergency patients in clinical environments with a 3D structured light sensor. Proceedings - IEEE International Conference on Robotics and Automation, 2015-June(June), 2888–2893. https://doi.org/10.1109/ICRA.2015.7139593
dc.relation.referencesPfitzner, C., May, S., Merkl, C., Breuer, L., Kohrmann, M., Braun, J., Dirauf, F., & Nuchter, A. (2015b). Libra3D: Body weight estimation for emergency patients in clinical environments with a 3D structured light sensor. Proceedings - IEEE International Conference on Robotics and Automation, 2015-June(June), 2888–2893. https://doi.org/10.1109/ICRA.2015.7139593
dc.relation.referencesPfitzner, C., May, S., & Nüchter, A. (2016). Neural network-based visual body weight estimation for drug dosage finding. Medical Imaging 2016: Image Processing, 9784(March), 97841Z. https://doi.org/10.1117/12.2216042
dc.relation.referencesPfitzner, C., May, S., & Nüchter, A. (2017). Evaluation of Features from RGB-D Data for Human Body Weight Estimation. IFAC-PapersOnLine, 50(1), 10148–10153. https://doi.org/10.1016/j.ifacol.2017.08.1761
dc.relation.referencesPfitzner, C., May, S., & Nüchter, A. (2018a). Body weight estimation for dose-finding and health monitoring of lying, standing and walking patients based on RGB-D data. Sensors (Switzerland), 18(5). https://doi.org/10.3390/s18051311
dc.relation.referencesPfitzner, C., May, S., & Nüchter, A. (2018b). Body weight estimation for dose-finding and health monitoring of lying, standing and walking patients based on RGB-D data. Sensors (Switzerland), 18(5). https://doi.org/10.3390/s18051311
dc.relation.referencesPirker, K., & Matthias, R. (2009). Human Body Volume Estimation in a Clinical Environment. May 2014.
dc.relation.referencesPROCESO DE PRESTACION DE LOS SERVICIOS SOCIALES ETAPA PARA PRESTAR SERVICIOS SOCIALES INTEGRALES PROCEDIMIENTO DEL SISTEMA DE VIGILANCIA NUTRICIONAL INSTRUCTIVO PARA LA TOMA Y REGISTRO DE MEDIDAS ANTROPOMETRICAS DE LOS ADULTOS Y LAS ADULTAS CON DISCAPACIDAD Y DIFICULTAD PARA ASUMIR LA BIPEDESTACIÓN. (n.d.). Retrieved September 1, 2021, from www.integracionsocial.gov.co
dc.relation.referencesResolución Número 914 De 2020. (n.d.). https://www.minsalud.gov.co/Normatividad_Nuevo/Resolución No. 914 de 2020.pdf
dc.relation.referencesS, M., & AM, K. (2005). How accurate is weight estimation in the emergency department? Emergency Medicine Australasia : EMA, 17(2), 113–116. https://doi.org/10.1111/J.1742-6723.2005.00701.X
dc.relation.referencesSeo, D., Kang, E., Kim, Y. mi, Kim, S. Y., Oh, I. S., & Kim, M. G. (2020). SVM-based waist circumference estimation using Kinect. Computer Methods and Programs in Biomedicine, 191, 105418. https://doi.org/10.1016/j.cmpb.2020.105418
dc.relation.referencesServicios sanitarios de calidad. (n.d.). Retrieved September 4, 2021, from https://www.who.int/es/news-room/fact-sheets/detail/quality-health-services
dc.relation.referencesSpencer, B. F., Hoskere, V., & Narazaki, Y. (2019). Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring. In Engineering (Vol. 5, Issue 2). https://doi.org/10.1016/j.eng.2018.11.030
dc.relation.referencesStancic, I., Cecić, M., & Supuk, T. (n.d.). Computer vision system for human anthropometric parameters estimation Computer vision in kinematic analysis of sports activities View project Smartbots-Autonomous Control of Mobile Robots Using Computer Vision Algorithms and Modern Neural Network Architec. https://www.researchgate.net/publication/228667014
dc.relation.referencesStančić, I., Musić, J., & Zanchi, V. (2013). Improved structured light 3D scanner with application to anthropometric parameter estimation. Measurement: Journal of the International Measurement Confederation, 46(1), 716–726. https://doi.org/10.1016/j.measurement.2012.09.010
dc.relation.referencesStancic, I., Supuk, T., & Cecic, M. (2009). Computer vision system for human anthropometric parameters estimation. WSEAS Transactions on Systems, 8(3), 430–439.
dc.relation.referencesUhm, T., Park, H., & Park, J. Il. (2015). Fully vision-based automatic human body measurement system for apparel application. Measurement: Journal of the International Measurement Confederation, 61, 169–179. https://doi.org/10.1016/j.measurement.2014.10.044
dc.relation.referencesVelardo, C., & Dugelay, J. L. (2010). Weight estimation from visual body appearance. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. https://doi.org/10.1109/BTAS.2010.5634540
dc.relation.referencesVelardo, C., & Dugelay, J. L. (2012). What can computer vision tell you about your weight? European Signal Processing Conference, November, 1980–1984.
dc.relation.referencesWang, L., Li, D., Zhu, Y., Tian, L., & Shan, Y. (n.d.). Dual Super-Resolution Learning for Semantic Segmentation.
dc.relation.referencesLiu, Y., Sowmya, A., & Khamis, H. (2018b). Single camera multi-view anthropometric measurement of human height and mid-upper arm circumference using linear regression. PLoS ONE, 13(4). https://doi.org/10.1371/journal.pone.0195600
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAntropometríaspa
dc.subjectDecúbito supinospa
dc.subjectExactitudspa
dc.subjectErrorspa
dc.subjectKinectspa
dc.subjectPrecisiónspa
dc.subjectVisión por computadorspa
dc.subject.keywordsAnthropometryeng
dc.subject.keywordsErroreng
dc.subject.keywordsAccuracyeng
dc.subject.keywordsSupine decubituseng
dc.subject.keywordsKinecteng
dc.subject.keywordsPrecisioneng
dc.subject.keywordsComputer visioneng
dc.titleSistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador.spa
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1feng
dc.type.driverinfo:eu-repo/semantics/bachelorThesiseng
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
sistemadevaloracionantropometrica.pdf
Tamaño:
3.41 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
202103650159573-27OCT2021 JORGE FAYAD.pdf
Tamaño:
157.23 KB
Formato:
Adobe Portable Document Format
Descripción:
LICENCIA APROBADA