Pensamientos científico y tecnológico : un estudio de sus relaciones mediante electroencefalografía cuantitativa (QEEG) en estudiantes de secundaria.

dc.contributor.advisorZapata Castañeda, Pedro Nelspa
dc.contributor.authorTorres Sánchez, julián Daríospa
dc.coverage.spatialBogotá, Colombiaspa
dc.coverage.temporal2000 - 2025spa
dc.date.accessioned2025-06-24T20:10:52Z
dc.date.available2025-06-24T20:10:52Z
dc.date.issued2025
dc.description.abstractSe presentan los avances de un proyecto de investigación de nivel doctoral que tiene como objetivo caracterizar las relaciones (similitudes y diferencias) que hay entre el Pensamiento Tecnológico (PT) y el Pensamiento Científico (PC) a partir del análisis y comparación cuantitativa de las señales encefalográficas (EEG) que se producen en 28 estudiantes de Ciclo 4 de educación básica secundaria al resolver pruebas sobre Actividades Tecnológicas Escolares (ATE), Actividades Científicas Escolares (ACE) y Actividades Tecno-científicas Escolares (ATCE). Al respecto, se diseñaron, validaron e implementaron 12 actividades, cuatro por cada tipo de pensamiento. Los registros se analizan a nivel de sensor y de fuente mediante técnicas cuantitativas y estadísticas para establecer las relaciones entre los tipos de pensamiento estudiados. De los resultados encontrados se destaca que el PC activa predominantemente áreas auditivas y somatosensoriales, vinculadas al diálogo interno, la formulación de hipótesis y la planificación ejecutiva, mientras que el PT presenta mayor activación en áreas visuales y parietales, relacionadas con el procesamiento visomotor y la memoria de trabajo espacial. Por su lado, las ATCE combinan ambos patrones, reflejando un procesamiento cognitivo integrado que conecta información sensorial, visual y ejecutiva.spa
dc.description.abstractenglishThe advances of a doctoral-level research project are presented, aiming to characterize the relationships (similarities and differences) between Technological Thinking (TT) and Scientific Thinking (ST) through the quantitative analysis and comparison of electroencephalographic (EEG) signals produced by 28 students in Cycle 4 of education when solving tests on School Technological Activities (STA), School Scientific Activities (SSA), and School Techno-Scientific Activities (STSA). To this end, 12 activities were designed, validated, and implemented, with 4 for each type of thinking. The records are analyzed at the sensor and source levels using quantitative and statistical techniques to establish relationships between the studied types of thinking. In the context of a partial analysis of an activity for each type of thinking, the dorsolateral prefrontal area is highlighted as a common area for TT, ST, and TT-ST. On the other hand, the dominance in the activation of lateral cortical areas is emphasized for both TT and TT-ST compared to ST. Among the findings, it is noteworthy that the left lateral area and the left inferior area are activated for both ST and TT-ST but not for TT.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Educaciónspa
dc.description.researchareaNeuroeducaciónspa
dc.formatPDFspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameinstname:Universidad Pedagógica Nacionalspa
dc.identifier.reponamereponame: Repositorio Institucional UPNspa
dc.identifier.repourlrepourl: http://repositorio.pedagogica.edu.co/
dc.identifier.urihttp://hdl.handle.net/20.500.12209/21291
dc.language.isospa
dc.publisherUniversidad Pedagógica Nacionalspa
dc.publisher.facultyDoctorado en Educaciónspa
dc.publisher.programDoctorado Interinstitucional en Educaciónspa
dc.relation.referencesAguirre, R. y Moreira, K. (2015). Lenguaje y pensamiento. En A. Vásquez (Ed.), Manual de Introducción a la Psicología Cognitiva. UdelaR.spa
dc.relation.referencesAlbornoz, M. (1999). Ciencia, la frontera sin fin Un informe al presidente, julio de 1945. Redes, VI(14), 89–156. http://iec.unq.edu.ar/index.php/es/publicaciones/revista-redes/numeros-anteriores/item/67-redes-%E2%80%93-revista-de-estudios-sociales-de-la-ciencia-spa
dc.relation.referencesAlderson-Day, B., Moffatt, J., Bernini, M., Mitrenga, K., Yao, B., y Fernyhough, C. (2020). Processing speech and thoughts during silent reading: Direct reference effects for speech by fictional characters in voice-selective auditory cortex and a theory-of-mind network. Journal of Cognitive Neuroscience, 32(9), 1637-1653. https://doi.org/10.1162/jocn_a_01571spa
dc.relation.referencesAlderson-Day, B., Weis, S., McCarthy-Jones, S., Moseley, P., Smailes, D., y Fernyhough, C. (2016). The brain’s conversation with itself: Neural substrates of dialogic inner speech. Social Cognitive and Affective Neuroscience, 11(1), 110–120. https://doi.org/10.1093/scan/nsv094spa
dc.relation.referencesArenas, A., Ortiz, C. y Álvarez, L. (2005). Transferencia del conocimiento tecnológico al aula: estructuración del pensamiento tecnológico mediante la enseñanza del diseño. Revista UIS Ingenierías, 4(2), 129–138. https://www.redalyc.org/articulo.oa?id=553756895003spa
dc.relation.referencesBaars, B. J. y Gage, N. M. (2010). Cognition, brain and consciousness: introduction to cognitive neuroscience. Elsevier. https://doi.org/10.1016/C2009-0-01556-spa
dc.relation.referencesBabini, J. (1947). Origen y naturaleza de la ciencia. Espasa Calpespa
dc.relation.referencesBáez, O. (2021). Antología de ensayos de ciencias de la vida. Periódico Opción.spa
dc.relation.referencesBardige, K. y Russell, M. (2014). Collections: Un plan de estudios centrado en el método STEM. Heritage Museums & Gardens Inc.spa
dc.relation.referencesBaker, C. M., Burks, J. D., Briggs, R. G., Conner, A. K., Glenn, C. A., Morgan, J. P., Stafford, J., Sali, G., McCoy, T. M., Battiste, J. D., O'Donoghue, D. L., y Sughrue, M. E. (2018a). A connectomic atlas of the human cerebrum-chapter 2: the lateral frontal lobe. Operative Neurosurgery (Hagerstown, Md.), 15(suppl_1), S10–S74. https://doi.org/10.1093/ons/opy254spa
dc.relation.referencesBaker, C. M., Burks, J. D., Briggs, R. G., Sheets, J. R., Conner, A. K., Glenn, C. A., Sali, G., McCoy, T. M., Battiste, J. D., O'Donoghue, D. L., y Sughrue, M. E. (2018b). A connectomic atlas of the human cerebrum-chapter 3: the motor, premotor, and sensory cortices. Operative Neurosurgery (Hagerstown, Md.), 15(suppl_1), S75–S121. https://doi.org/10.1093/ons/opy256spa
dc.relation.referencesBaker, C. M., Burks, J. D., Briggs, R. G., Stafford, J., Conner, A. K., Glenn, C. A., Sali, G., McCoy, T. M., Battiste, J. D., O'Donoghue, D. L., y Sughrue, M. E. (2018c). A connectomic atlas of the human cerebrum-chapter 4: the medial frontal lobe, anterior cingulate gyrus, and orbitofrontal cortex. Operative Neurosurgery (Hagerstown, Md.), 15(suppl_1), S122–S174. https://doi.org/10.1093/ons/opy257spa
dc.relation.referencesBaker, C. M., Burks, J. D., Briggs, R. G., Conner, A. K., Glenn, C. A., Robbins, J. M., Sheets, J. R., Sali, G., McCoy, T. M., Battiste, J. D., O'Donoghue, D. L., y Sughrue, M. E. (2018d). A connectomic atlas of the human cerebrum-chapter 5: the insula and opercular cortex. Operative Neurosurgery (Hagerstown, Md.), 15(suppl_1), S175–S244. https://doi.org/10.1093/ons/opy259spa
dc.relation.referencesBaker, C. M., Burks, J. D., Briggs, R. G., Milton, C. K., Conner, A. K., Glenn, C. A., Sali, G., McCoy, T. M., Battiste, J. D., O'Donoghue, D. L., y Sughrue, M. E. (2018f). A connectomic atlas of the human cerebrum-chapter 6: the temporal lobe. Operative Neurosurgery (Hagerstown, Md.), 15(suppl_1), S245–S294. https://doi.org/10.1093/ons/opy260spa
dc.relation.referencesBaker, C. M., Burks, J. D., Briggs, R. G., Conner, A. K., Glenn, C. A., Taylor, K. N., Sali, G., McCoy, T. M., Battiste, J. D., O'Donoghue, D. L., y Sughrue, M. E. (2018g). A connectomic atlas of the human cerebrum-chapter 7: the lateral parietal lobe. Operative Neurosurgery (Hagerstown, Md.), 15(suppl_1), S295–S349. https://doi.org/10.1093/ons/opy261spa
dc.relation.referencesBaker, C. M., Burks, J. D., Briggs, R. G., Conner, A. K., Glenn, C. A., Manohar, K., Milton, C. K., Sali, G., McCoy, T. M., Battiste, J. D., O'Donoghue, D. L., y Sughrue, M. E. (2018h). A connectomic atlas of the human cerebrum-chapter 8: the posterior cingulate cortex, medial parietal lobe, and parieto-occipital sulcus. Operative Neurosurgery (Hagerstown, Md.), 15(suppl_1), S350–S371. https://doi.org/10.1093/ons/opy262spa
dc.relation.referencesBaker, C. M., Burks, J. D., Briggs, R. G., Stafford, J., Conner, A. K., Glenn, C. A., Sali, G., McCoy, T. M., Battiste, J. D., O'Donoghue, D. L., y Sughrue, M. E. (2018i). A connectomic atlas of the human cerebrum-Chapter 9: The occipital lobe. Operative Neurosurgery (Hagerstown, Md.), 15(suppl_1), S372–S406. https://doi.org/10.1093/ons/opy263spa
dc.relation.referencesBarsalou L. W. (2008). Grounded cognition. Annual review of psychology, 59, 617–645. https://doi.org/10.1146/annurev.psych.59.103006.093639spa
dc.relation.referencesBartolo, A., Daumuller, M., Della Sala, S. y Goldenberg, G. (2007). Relationship between object-related gestures and the fractionated object knowledge system. Behavioural Neurology, 18, 143–147.spa
dc.relation.referencesBrainstorm. (n.d.). Source estimation. Neuroimage. https://neuroimage.usc.edu/brainstorm/Tutorials/SourceEstimationspa
dc.relation.referencesBernaud, J. L., Priou, P. y Simonnet, R. (1994). Batterie multifactorielle d’aptitudes [Multifactorial Assessment Battery]. du Centre de Psychologie Appliquée.spa
dc.relation.referencesBourne, L., Ekastrand, B. y Dominowski, R. (1975). Psicologia del pensamiento. Trillas.spa
dc.relation.referencesBunge, M. A. (1997). La ciencia: su método y su filosofía. Siglo Veintespa
dc.relation.referencesBunge, M. A. (1999). Las ciencias sociales en discusión. Editorial Sudamericana.spa
dc.relation.referencesBunge, M. A. (2002). Epistemología (tercera). siglo veintiuno editores.spa
dc.relation.referencesBuxbaum, L. y Saffran, E. (2002). Knowledge of object manipulation and object function: dissociations in apraxic and nonapraxic subject. Brain and Language, 82, 179–199spa
dc.relation.referencesBuxbaum, L., Sirigu, A., Schwartz, M. y Klatzky, R. (2003). Cognitive representations of hand posture in ideomotor apraxia. Neuropsychologia, 41, 1091–1113.spa
dc.relation.referencesBuxbaum, L. J., Johnson-Frey, S. H., & Bartlett-Williams, M. (2005a). Deficient internal models for planning hand-object interactions in apraxia. Neuropsychologia, 43(6), 917–929. https://doi.org/10.1016/j.neuropsychologia.2004.09.006spa
dc.relation.referencesCamelo, S., Rojas, D., Castro, R. y Mejia, A. (2015). Registro de la actividad eléctrica cerebral de la atención implicada en la conducción bajo el efecto del alcohol. Perspect. Psicol., 11(2), 217–233.spa
dc.relation.referencesCárdena, G. A. (2002). Diccionario de Ciencias Económico Administrativas (3a edición). CUCEA.spa
dc.relation.referencesCárdenas, E. (2013). Pensamiento Tecnológico en una muestra de estudiantes del área de Tecnología e Informática Assessment of Technological Thought Attributes in a Sample of Students from the Technology and Informatics Field. Informador Técnico, 77, p 125-135.spa
dc.relation.referencesCentro de Estudios Sociales y de Opinión Pública. (2006). “Definición” en Ciencia y Tecnología. http://archivos.diputados.gob.mx/Centros_Estudio/Cesop/Comisiones/d_cyt.htmspa
dc.relation.referencesChalmers, A. F. (2000). ¿Qué es esa cosa llamada ciencia? (3.ª ed. corregida y aumentada). Siglo XXI Editores.spa
dc.relation.referencesChaquea, D. y Chamorro, C. D. (2013). Aproximación conceptual de técnica y tecnología en un marco de desarrollo de proyectos. Revista Nexus Comunicación, 13(1), 148–173. https://doi.org/10.25100/nc.v1i13.766spa
dc.relation.referencesCongedo, M., Lubar, J. y Joffe, D. (2004). Low-resolution electromagnetic tomography neurofeedback. IEEE, 12(4), 387–397. https://doi.org/10.1109/TNSRE.2004.840492spa
dc.relation.referencesComité Internacional de Bioética de la UNESCO. (2022). Cuestiones éticas de la neurotecnología. Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO). https://doi.org/10.54678/QNKB6229spa
dc.relation.referencesCupani, A. (2006). La peculiaridad del conocimiento tecnológico. Scientiae Studia, 4, 353–371. https://www.scielo.br/j/ss/a/STXgdYmmHXL4Qjcb5xYqrDm/?lang=esspa
dc.relation.referencesDaly, I., Bourgaize, J. y Vernitski, A. (2019). Mathematical mindsets increase student motivation: Evidence from the EEG. Trends in Neuroscience and Education, 15, 18–28. https://doi.org/10.1016/j.tine.2019.02.005spa
dc.relation.referencesDampier, W. (1972). Historia de la Ciencia. Tecnos Editorial.spa
dc.relation.referencesDan, A. y Reiner, M. (2017). Real time eeg based analysis of cognitive load enhance instructional analysis. Journal of Educational Data Mining, 9(2), 31–44. https://jedm.educationaldatamining.org/index.php/JEDM/article/view/160spa
dc.relation.referencesDe Vega, M. (1990). Introducción a la psicología cognitiva. Alianza Editorial.spa
dc.relation.referencesDehaene, S. (2019). Cómo aprendemos (1a ed.). siglo veintiuno.spa
dc.relation.referencesDíaz, I. y García, M. (2011). Más allá del paradigma de la alfabetización . la adquisición de cultura científica como reto educativo. Formación Universitaria, 4(2), 3–14. https://doi.org/10.4067/S0718-50062011000200002spa
dc.relation.referencesDunbar, K. y Fugelsang, J. (2005a). Brain-based mechanisms underlying complex causal thinking. Neuropsychologia, 43(8), 1204–1213. https://doi.org/10.1016/j.neuropsychologia.2004.10.012spa
dc.relation.referencesDunbar, K. y Fugelsang, J. (2005b). Causal thinking in science: how scientists and students interpret the unexpected. En M. Gorman, R. Tweney, D. Gooding y A. Kincannon (Eds.), Scientific And Technological Thinking (pp. 57–79). Lawrence Erlbaum Associates.spa
dc.relation.referencesDunbar, K. y Klahr, D. (2012). Scientific Thinking and Reasoning. En K. J. Holyoak y R. G. Morrison (Eds.), The Oxford Handbook of Thinking and Reasoning (Número April 2013, pp. 701–718). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199734689.001.0001spa
dc.relation.referencesDunbar, K. N. (2009). The biology of physics : what the brain reveals about our understanding of the physical world. AIP Conference Proceedings, 1179(1). https://doi.org/https://doi.org/10.1063/1.3266703spa
dc.relation.referencesDunbar, K. N. (2014). What scientific thinking reveals about the nature of cognition. January 2001.spa
dc.relation.referencesEdelman, G. M. (1992). Bright, air, brilliant fire: On the matter of the mind. Basic Books.spa
dc.relation.referencesEllul, J. (2003). La edad de la técnica. Ediciones Octaedro.spa
dc.relation.referencesFederico, G., Reynaud, E., Navarro, J., Lesourd, M., Gaujoux, V., Lamberton, F., Ibarrola, D., Cavaliere, C., Alfano, V., Aiello, M., Salvatore, M., Seguin, P., Schnebelen, D., Brandimonte, M. A., Rossetti, Y. y Osiurak, F. (2022). The cortical thickness of the area PF of the left inferior parietal cortex mediates technical-reasoning skills. Scientific Reports |, 12, 11840. https://doi.org/10.1038/s41598-022-15587-8spa
dc.relation.referencesFeenberg, A. (1999). Questioning technology. Routledge.spa
dc.relation.referencesFugelsang, J. A., Roser, M. E., Corballis, P. M., Gazzaniga, M. S. y Dunbar, K. N. (2005). Brain mechanisms underlying perceptual causality. 24, 41–47. https://doi.org/10.1016/j.cogbrainres.2004.12.001spa
dc.relation.referencesFugelsang, J. y Dunbar, K. (2005). Scientific thinking and reasoning. En K. Holyoak y R. Morrison (Eds.), The Cambridge Handbook of Thinking and Reasoning (pp. 705–725). Cambridge University Press.spa
dc.relation.referencesFurman, M. (2016). Título del libro: Educar mentes curiosas: la formación del pensamiento científico y tecnológico en la infancia. En Espiral. Cuadernos Del Profesorado (Vol. 10, Número 20). Fundación Santillana. https://doi.org/10.25115/ecp.v10i20.1015spa
dc.relation.referencesGay, A. y Ferreras, M. A. (1997). La educacion tecnologica : aportes para su implementacion / Aquiles Gay, Miguel Angel Ferreras ; Ministerio de Cultura y Educacion. http://www.bibliotecadonbosco.com.ar/index.php?p=show_detail&id=7249&keywords=spa
dc.relation.referencesGlasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C. F., Jenkinson, M., Smith, S. M., & Van Essen, D. C. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536(7615), 171–178. https://doi.org/10.1038/nature18933spa
dc.relation.referencesGoldenberg, G. y Hagmann, S. (1998). Tool use and mechan_ical problem solving in apraxia. Neuropsychologia, 36, 581–589.spa
dc.relation.referencesGonzález, W. y Hernández, L. (2000). Tecnologia y tecnica: tres perspectivas. En Energia y computación (Vol. 9, Número 15, p. 7). http://bibliotecadigital.univalle.edu.co/xmlui/bitstream/handle/10893/1344/Tecnologia y tecnica.pdf?sequence=6spa
dc.relation.referencesGrandchamp, R., Rapin, L., Perrone-Bertolotti, M., Pichat, C., Haldin, C., Cousin, E., Lachaux, J. P., Dohen, M., Perrier, P., Garnier, M., Baciu, M., & Lœvenbruck, H. (2019). The ConDialInt model: Condensation, dialogality, and intentionality dimensions of inner speech within a hierarchical predictive control framework. Frontiers in Psychology, 10, 2019. https://doi.org/10.3389/fpsyg.2019.02019spa
dc.relation.referencesGrech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., Xanthopoulos, P., Sakkalis, V., & Vanrumste, B. (2008). Review on solving the inverse problem in EEG source analysis. Journal of NeuroEngineering and Rehabilitation, 5(1), 5-25. https://doi.org/10.1186/1743-0003-5-25spa
dc.relation.referencesHalfin, H. H. (1973). Technology: A process approach. (Doctoral dissertation, West Virgina University, 1973)spa
dc.relation.referencesHartmann, K., Goldenberg, G., Daumuller, M. y Hermsdorfer, J. (2005). It takes the whole brain to make a cup of coffee: the neuropsychology of naturalistic actions involving technical devices. Neuropsychologia, 43, 625–637.spa
dc.relation.referencesHeilman, K. M., Maher, L. M., Greenwald, M. L. y Rothi, L. J. (1997). Conceptual apraxia from lateralized lesions. Neurology, 49, 457–464.spa
dc.relation.referencesHernández, L. (2020). La técnia moderna. reflexiones epistemológicas (1a). Colección Artes y Humanidades- Filosofia. https://doi.org/10.25100/peu.454spa
dc.relation.referencesHill, R. B. (1997). The design of an instrument to assess problem solving activities in technology education. Journal of Technology Education, 9(1)spa
dc.relation.referencesHill, R. B. y Wicklein, R. C. (1999). A factor analysis of primary mental processes for technological problem solving. Journal of Industrial Teacher Education, 36(2).spa
dc.relation.referencesHodges, J., Bozeat, S., Lambon Ralph, M., Patterson, K. y Spatt, J. (2000). The role of knowledge in object use: evidence from semantic dementia. Brain, 123, 1913–1925.spa
dc.relation.referencesHodges, J., Spatt, J. y Patterson, K. (1999). ‘“What”’ and ‘“how”’: evidence for the dissociation of object knowledge and mechanical problem-solving skills in the human brain. Proceeding of the National Academy of Sciences of the USA, 96, 9444–9448.spa
dc.relation.referencesHolyoak, K. J. y Morrison, R. G. (2012). Thinking and reasoning: a reader’s guide. En K. J. Holyoak y R. G. Morrison (Eds.), The Oxford Handbook of Thinking and Reasoning (pp. 1–7). Oxford University Press. https://doi.org/10.1093/OXFORDHB/9780199734689.013.0001spa
dc.relation.referencesHund, E. (1997). Nature vs. nature: the feeling of vuja de. En R. J. Sternberg y E. Grigorenko (Eds.), Intelligence, Heredity, and Environment, Cambridge. Cambridge University Press.spa
dc.relation.referencesIhde, D. (2017). Tecnologia e o mundo da vida: do jardim à terra (M. F. Bozatski, Trad.). Editora UFFS. https://books.scielo.org/id/zcvh9/pdf/ihde-9788564905610.pdfspa
dc.relation.referencesJatoi, M. A., Kamel, N., Malik, A. S., y Faye, I. (2014a). EEG based brain source localization comparison of sLORETA and eLORETA. Australasian Physical & Engineering Sciences in Medicine, 37(4), 713-721. https://doi.org/10.1007/s13246-014-0297-4spa
dc.relation.referencesJatoi, M. A., Kamel, N., Malik, A. S., Faye, I., y Begum, T. (2014b). A survey of methods used for source localization using EEG signals. Biomedical Signal Processing and Control, 11, 42-52. https://doi.org/10.1016/j.bspc.2014.01.009spa
dc.relation.referencesKim, H.-P. (2010). Analysis of eeg activities of elementary school students in the process of technological problem solving. Journal of Korean Practical Arts Education, 16(3), 15–34.spa
dc.relation.referencesKim, H.-P. (2011). Analysis of EEG Activities of High Students in the Process of Thinking of a Invention Problem. Revista de la Sociedad Coreana de Educación Técnica, 11(1), 128–144.spa
dc.relation.referencesKoslowski, B. (1996). Theory and evidence: Th e development of scientific reasoning. MIT Press.spa
dc.relation.referencesKosslyn, S. M., Thompson, W. L., y Ganis, G. (2006). The case for mental imagery. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195179088.001.0001spa
dc.relation.referencesKuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96, 674–689.spa
dc.relation.referencesKuhn, D. (2005). Education for thinking. Harvard University Press.spa
dc.relation.referencesKuhn, D. y Franklin, S. (2006). The second decade: What develops (and how). En W. Damon y R. M. Lerner (Eds.), Handbook of child psychology (pp. 953–993). John Wiley & Sons.spa
dc.relation.referencesLadriere, J. (1977). El reto de la racionalidad. Salamanca. Ediciones Sígueme.spa
dc.relation.referencesLiz, M. (1995). Conocer y actuar a través de la tecnología. En F. Brocano (Ed.), Nuevas meditaciones sobre la tecnología. Trotta.spa
dc.relation.referencesMaggio, M. (2018). Habilidades del siglo XXI : cuando el futuro es hoy - XIII Foro Latinoamericano de Eduación (1a ed.). Santillana.spa
dc.relation.referencesMagno, C. (2015). A Measure for Scientific Thinking. May.spa
dc.relation.referencesMalik, A. y Amin, H. (2017). Designing EEG Experiments for Studying the Brain: Design Code and Example Datasets. Academic Press.spa
dc.relation.referencesManterola, C., Quiroz, G., Salazar, P. y García, N. (2019). Metodología de los tipos y diseños de estudio más frecuentemente utilizados en investigación clínica. Revista Médica Clínica Las Condes, 30(1), 36–49. https://doi.org/https://doi.org/10.1016/j.rmclc.2018.11.005spa
dc.relation.referencesMartínez, C. (1993). Esbozo biográfico y bibliografía de Jorge Alberto Sabato. ADESTspa
dc.relation.referencesMasson, S., Potvin, P. y Riopel, M. (2012). Using fMRI to study conceptual change : Why and how ? International journal of environmental and science education, 7(January), 19–35.spa
dc.relation.referencesMayer, R. E. (1983). Pensamiento. resolución de problemas y cognición. Paidós Ibérica.spa
dc.relation.referencesMcComas, W. F. (2014). Scientific thinking skills. The Language of Science Education, 25(2003), 96–96. https://doi.org/10.1007/978-94-6209-497-0_86spa
dc.relation.referencesMEN. (2008). Ser competente en tecnología: ¡una necesidad para el desarrollo! Orientaciones generales para la educación en tecnología (MEN). Ministra de educación Nacional. https://www.mineducacion.gov.co/1621/articles-340033_archivo_pdf_Orientaciones_grales_educacion_tecnologia.pdfspa
dc.relation.referencesMerchán, C. (2018). Orientaciones para el uso de estrategias didácticas en el desarrollo del pensamiento tecnológico. (1a ed.). Universidad Pedagógica y Tecnológica de Colombia (UPTC).spa
dc.relation.referencesMigueles, M., Tenorio, M., Felisberti, F., Palmero, F., Fuentes, I., Sebastián, M., Gallegos, M., Fernández, C., Piqueras, J., García, A., Breva, A., Aparici, M., Godoy, J. y Bertolotti, V. (2016). Manual de introducción a la psicología cognitiva (A. Vásquez (Ed.)). Unidad de Comunicación de la Universidad de la República.spa
dc.relation.referencesMiller, E. K., y Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167spa
dc.relation.referencesMills, C., Fridman, I., Soussou, W., Waghray, D., Olney, A. M. y D’Mello, S. K. (2017). Put your thinking cap on: Detecting cognitive load using EEG during learning. ACM International Conference Proceeding Series, 80–89. https://doi.org/10.1145/3027385.3027431spa
dc.relation.referencesMolina del Río, J., Guevara, M., Hernández, M., Hidalgo, R. y Cruz, M. (2019). EEG correlation during the solving of simple and complex logical–mathematical problems. Cognitive, Affective and Behavioral Neuroscience, 19(4), 1036–1046. https://doi.org/10.3758/s13415-019-00703-5spa
dc.relation.referencesMorrison, R. y Knowlton, B. (2012). Neurocognitive methods in higher cognition. En Th e Oxford Handbook of Th inking and Reasoning (pp. 61–89). Oxfordspa
dc.relation.referencesMumford, L. (1994). Técnica y civilización. Alianza Editorial.spa
dc.relation.referencesMuñoz, E. J. (2014). Clasificación de patrones de imaginación motora en una interfaz cerebro computador de bajo costo usando software libre [Universidad de Pereira]. http://repositorio.utp.edu.co/dspace/handle/11059/4635spa
dc.relation.referencesNaciones Unidas. (2018). La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe (LC/G.2681-P/Rev.3). Comisión Económica para América Latina y el Caribe (CEPAL).spa
dc.relation.referencesNiiniluoto, I. (2013). Ciencia frente a tecnología: ¿diferencia o identidad? Arbor, 157, 285–299. https://doi.org/10.3989/arbor.1997.i620.1818spa
dc.relation.referencesNuwer, M. (1997). Assessment of digital EEG, quantitative EEG, and EEG brain mapping. Special Article-Neurology, 49, 277–292.spa
dc.relation.referencesO’Donohue, W., Kitchener, R. y Gorman, M. (2014). Psychology of science. En The Philosophy of Psychology. https://doi.org/10.4135/9781446279168.n4spa
dc.relation.referencesOCDE. (1995). The Measurement of Scientific and Technological Activities Manual on the Measurement of Human Resources Devoted To S&T: Canberra Manual (Número 95). OECD.spa
dc.relation.referencesOchipa, C., Rothi, L. y Heilman, K. (1989). Ideational apraxia: A deficit in tool selection and use. Annals of Neurology, 25, 190–193.spa
dc.relation.referencesOchipa, C., Rothi, L. y Heilman, K. (1992). Conceptual apraxia in Alzheimer’s disease. Brain, 115, 1061–1107.spa
dc.relation.referencesOrovas, C., Sapounidis, T., Volioti, C., & Keramopoulos, E. (2025). EEG in education: A scoping review of hardware, software, and methodological aspects. Sensors, 25(1), 182. https://doi.org/10.3390/s25010182spa
dc.relation.referencesOsiurak, F. y Badets, A. (2016). Tool use and affordance: manipulation-based versus reasoning-based approaches. Psychol. Rev., 123, 534–568. https://doi.org/10.1037/ rev0000027spa
dc.relation.referencesOsiurak, F., Jarry, C., Allain, P., Aubin, G., Etcharry-Bouyx, F. y Richard, I. (2009). Unusual use of objects after unilateral brain damage: the technical reasoning model. Cortex, 45, 769–783. https://doi.org/10.1016/j.cortex.2008. 06.013spa
dc.relation.referencesOsiurak, F., Jarry, C. y Le Gall, D. (2010). Grasping the affordances, understanding the reasoning: toward a dialectical theory of human tool use. Psychol. Rev., 117, 517–540. https://doi.org/10.1037/a0019004spa
dc.relation.referencesOsiurak, F., Lesourd, M., Navarro, J. y Reynaud, E. (2020). Technition: when tools come out of the closet. Perspectives on psychological science : a journal of the Association for Psychological Science, 15(4), 880–897. https://doi.org/10.1177/1745691620902145spa
dc.relation.referencesPapuc, D., Bălan, O., Dascălu, M. I., Moldoveanu, A. y Morar, A. (2017). Brain activation and cognitive load during EEG measured creativity tasks accompanied by relaxation music. CHIRA 2017 - Proceedings of the International Conference on Computer-Human Interaction Research and Applications, Chira, 156–162. https://doi.org/10.5220/0006511201560162spa
dc.relation.referencesParis, J., Ricardo, A. y Rymond, D. (2019). Desarrollo y crecimiento en la niñez (A. Johnson (Ed.)). College of the Canyons. https://espanol.libretexts.org/@go/page/49970spa
dc.relation.referencesPark, S., Song, K. y Kim, S. (2015). EEG analysis for computational thinking based education effect on the learners ’ cognitive load. Proceedings of the Applied Computer and Applied Computational Science (ACACOS’15), 38–43.spa
dc.relation.referencesPascual-Marqui, R. D. (1999). Review of Methods for Solving the EEG Inverse Problem. International Journal of Bioelectromagnetism, 1(1), 75–86. https://doi.org/10.1186/1743-0003-5-25spa
dc.relation.referencesPascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods and findings in experimental and clinical pharmacology, 24 Suppl D, 5–12spa
dc.relation.referencesPascual-Marqui, R. D. (2007a). LORETA: low resolution brain electromagnetic tomography. The KEY Institute for Brain-Mind Research.spa
dc.relation.referencesPascual-Marqui, R. D. (2007b). Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: Exact, zero error localization. Math. Physics Biol. Physics Neurons Cogn., 0710.spa
dc.relation.referencesPascual-Marqui, R. D., Michel, C. M. y Lehmann, D. (1994). Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18(1), 49–65. https://doi.org/10.1016/0167-8760(84)90014-Xspa
dc.relation.referencesPascual Marqui, R. D., Pascual-Montano, A. y Lehmann, D. (2006). Exact low resolution brain electromagnetic tomography (eLORETA). Neuroimage, 31.spa
dc.relation.referencesPearson, J., Naselaris, T., Holmes, E. A., y Kosslyn, S. M. (2015). Mental imagery: Functional mechanisms and clinical applications. Trends in Cognitive Sciences, 19(10), 590–602. https://doi.org/10.1016/j.tics.2015.08.003spa
dc.relation.referencesPerrone-Bertolotti, M., Rapin, L., Lachaux, J. P., Baciu, M., y Lœvenbruck, H. (2014). What is that little voice inside my head? Inner speech phenomenology, its role in cognitive performance, and its relation to self-monitoring. Behavioural brain research, 261, 220–239. https://doi.org/10.1016/j.bbr.2013.12.034spa
dc.relation.referencesPoincaré, H. (1905). Ciencia e hipotesis. The Walter Scott Publishing Company.spa
dc.relation.referencesQuantitative EEG (qEEG) | Psychology Glossary | alleydog.com. (s/f). Recuperado el 4 de mayo de 2022, de https://alleydog.com/glossary/cite-my-term.php?term=Quantitative+EEG+%28qEEG%29spa
dc.relation.referencesPostman, N. (1992). Technopoly: The surrender of culture to technology. Knopfspa
dc.relation.referencesQuintanilla, M. A. (2005). Tecnología : un enfoque filosófico y otros ensayos de filosofía de la tecnología. Fondo de Cultura Económica.spa
dc.relation.referencesRamos-Argüelles, F., Morales, G., Egozcue, S., Pabón, R. M., & Alonso, M. T. (2009). Técnicas básicas de electroencefalografía: principios y aplicaciones clínicas. Anales del Sistema Sanitario de Navarra, 32(Supl. 3), 69–82. http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272009000600006&lng=es&tlng=esspa
dc.relation.referencesRodríguez, G. (1998). Ciencia , Tecnología y Sociedad : una mirada desde la Educación en Tecnología. Revista Iberoamericana de Educación, 18. https://rieoei.org/historico/oeivirt/rie18a05.htmspa
dc.relation.referencesRodríguez, M. y Mendivelso, F. (2018). Diseño de investigación de corte transversal. Revista Médica Sanitas, 21, 141–146. https://doi.org/10.26852/01234250.20spa
dc.relation.referencesRomo-Saltos, L. (1984). Ciencia: Filosofía y Método. Editorial Universitaria UCE.spa
dc.relation.referencesRosser, R. (1999). Scientific Thinking. En R. W. & F. Kei (Ed.), The MIT Encyclopedia of Cognitive Science (pp. 730–733). Cambridge MA: MIT Press.spa
dc.relation.referencesabato, J. A. y Mackenzie, M. (1982). La producción de tecnología : autónoma o transnacional. Nueva Imagen.spa
dc.relation.referencesSalkind, N. j. (1999). Métodos de investigación (3ra ed.). Prentice hall.spa
dc.relation.referencesSeung-Kwon, N. (2010). The Development of the Technological Thinking Disposition Measurement Instrument. Chungnam National. https://doi.org/https://doi.org/10.1016/B978-0-12-374534-7.00004-6spa
dc.relation.referencesSherlin, L. H. (2009). Diagnosing and treating brain function through the use of low resolution brain electromagnetic tomography (LORETA). Introduction to Quantitative EEG and Neurofeedback, 83–102. https://doi.org/10.1016/B978-0-12-374534-7.00004-6spa
dc.relation.referencesSpatt, J., Bak, T., Bozeat, S., Patterson, K., & Hodges, J. R. (2002). Apraxia, mechanical problem solving and semantic knowledge: Contributions to object usage in corticobasal degeneration. Journal of Neurology, 249, 601–608. https://doi.org/10.1007/s004150200094spa
dc.relation.referencesSimon, H. A. (1966). Scientific discovery and the psychology of problem solving. Mind and cosmos, 22–40.spa
dc.relation.referencesSimon, H. A. (1977). Models of discovery.spa
dc.relation.referencesSimpson, L. C. (1995). Technology, time, and the conversations of modernity. Routledge. https://www.routledge.com/Technology-Time-and-the-Conversations-of-Modernity/Simpson/p/book/9780415907729spa
dc.relation.referencesSkekun. (1981). Technical Thinking And Ways of Developing it (Vol. 23, Números 2–3, pp. 149–191). Soviet Education. https://doi.org/10.2753/RES1060-9393230203149spa
dc.relation.referencesSternberg, R. J. (1997). Thinking Styles. Cambridge University Press.spa
dc.relation.referencesStevens, C. E. y Zabelina, D. L. (2019). Creativity comes in waves: an EEG-focused exploration of the creative brain. Current Opinion in Behavioral Sciences, 27, 154–162. https://doi.org/10.1016/j.cobeha.2019.02.003spa
dc.relation.referencesStrimel, G. (2014). Engineering design: a cognitive process approach [Old Dominion University]. En STEMPS Theses & Dissertations. https://doi.org/10.25777/zzbj-b61spa
dc.relation.referencesel, F., Baillet, S., Mosher, J. C., Pantazis, D., y Leahy, R. M. (2011). Brainstorm: A user-friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience, 2011, Article ID 879716. https://doi.org/10.1155/2011/879716spa
dc.relation.referencesTadel, F., Bock, E., Niso, G., Mosher, J. C., Cousineau, M., Pantazis, D., Leahy, R. M., & Baillet, S. (2019). MEG/EEG group analysis with Brainstorm. Frontiers in Neuroscience, 13, 76. https://doi.org/10.3389/fnins.2019.00076spa
dc.relation.referencesTadel, F., Bock, E., Mosher, J. C., Leahy, R., & Baillet, S. (s.f.). Head model. Brainstorm. Recuperado el 8 de agosto de 2024, de https://neuroimage.usc.edu/brainstorm/Tutorials/HeadModelspa
dc.relation.referencesTalairach, J. y Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system : an approach to cerebral imaging. G. Thieme.spa
dc.relation.referencesUNESCO. (2022). Reimaginar juntos nuestros futuros: un nuevo contrato social para la educación. UNESCO.spa
dc.relation.referencesThomas, M. S. C., Ansari, D., y Knowland, V. C. P. (2019). Annual Research Review: Educational neuroscience: progress and prospects. Journal of Child Psychology and Psychiatry, 60(4), 477–492. https://doi.org/10.1111/jcpp.12973spa
dc.relation.referencesTorrijos-Muelas, M., González-Víllora, S., y Bodoque-Osma, A. R. (2021). La persistencia de los neuromitos en los entornos educativos: una revisión sistemática. Frontiers in Psychology, 11, 591923. https://doi.org/10.3389/fpsyg.2020.591923spa
dc.relation.referencesVann, S., Aggleton, J., y Maguire, E. (2009). What does the retrosplenial cortex do? Nature Reviews Neuroscience, 10(11), 792–802. https://doi.org/10.1038/nrn2733nospa
dc.relation.referencesVaesen, K. (2012). The cognitive bases of human tool use. Behavioral and Brain Sciences, 35(4), 203–218. https://doi.org/10.1017/S0140525X11001452spa
dc.relation.referencesVasquez-Echeverria, A. (2016). Manual de introducción a la psicología cognitiva. UCUR. Departamento de Publicaciones.spa
dc.relation.referencesVillegas, B. M. y Rojas, M. G. (2018). Interfaz cerebro ordenador BCI mediante el uso de Emotiv Insight. RevActaNova, 9(1), 3–31. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1683-07892019000100002&nrm=isospa
dc.relation.referencesVincenti, W. G. (1990). What engineers know and how they know it. The John Hopkins University Press.spa
dc.relation.referencesWicklein, R. C. y Rojewski, J. W. (1999). Toward a “Unified Curriculum Framework” for Technology Education. Journal of Industrial Teacher Education, 36(4).spa
dc.relation.referencesWilkening, F. y Sodian, B. (2005). Scientificc reasoning in young children: introduction. Swiss Journal of Psychology, 64, 137–139.spa
dc.relation.referencesWu, J. (2005). Piensa ahora con Da Vinci (R. Bangseung, Trad., 2006). Aracne.spa
dc.relation.referencesXie, W., & Richards, J. E. (2022). Cortical source localization in EEG frequency analysis. In P. A. Gable, M. W. Miller, & E. M. Bernat (Eds.), The Oxford handbook of EEG frequency (Oxford Library of Psychology). Oxford Academic. https://doi.org/10.1093/oxfordhb/9780192898340.013.16spa
dc.relation.referencesYao, B., Belin, P., y Scheepers, C. (2011). Silent reading of direct versus indirect speech activates voice-selective areas in the auditory cortex. Journal of Cognitive Neuroscience, 23(11), 3146-3152. https://doi.org/10.1162/jocn_a_00022spa
dc.relation.referencesZhou, Z., Hu, L., Sun, C., Li, M., Guo, F. y Zhao, Q. (2019). The effect of Zhongyong thinking on remote association thinking: An EEG study. Frontiers in Psychology, 10(FEB), 1–9. https://doi.org/10.3389/fpsyg.2019.00207spa
dc.relation.referencesZimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172–223. https://doi.org/10.1016/j.dr.2006.12.001spa
dc.relation.referencesZimmerman, C. y Croker, S. (2014). A prospective cognition analysis of scientific thinking and the implications for teaching and learning science. Journal of Cognitive Education and Psychology, 13(2), 245–257. https://doi.org/10.1891/1945-8959.13.2.245spa
dc.rights.accessAcceso abiertospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectPensamiento científicospa
dc.subjectPensamiento tecnológicospa
dc.subjectCogniciónspa
dc.subjectNeurologíaspa
dc.subjectElectroencefalografíaspa
dc.subject.keywordsScientific thinkingeng
dc.subject.keywordsTechnological thinkingeng
dc.subject.keywordsCognitioneng
dc.subject.keywordsNeurologyeng
dc.subject.keywordsElectroencephalographyeng
dc.titlePensamientos científico y tecnológico : un estudio de sus relaciones mediante electroencefalografía cuantitativa (QEEG) en estudiantes de secundaria.spa
dc.title.translatedScientific and Technological Thinking : A Study of Their Relationship Using Quantitative Electroencephalography (QEEG) in High School Students.eng
dc.typeinfo:eu-repo/semantics/doctoralThesis
dc.type.coarhttp://purl.org/coar/resource_type/c_db06eng
dc.type.driverinfo:eu-repo/semantics/masterThesiseng
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.localMonografía - Doctoradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.type.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Pensamiento científico y tecnológico.pdf
Tamaño:
3.53 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
202503780115363-06 JUN 25 JULIAN TORRES.pdf
Tamaño:
466.28 KB
Formato:
Adobe Portable Document Format
Descripción:
LICENCIA APROBADA