Pensamientos científico y tecnológico : un estudio de sus relaciones mediante electroencefalografía cuantitativa (QEEG) en estudiantes de secundaria.
| dc.contributor.advisor | Zapata Castañeda, Pedro Nel | spa |
| dc.contributor.author | Torres Sánchez, julián Darío | spa |
| dc.coverage.spatial | Bogotá, Colombia | spa |
| dc.coverage.temporal | 2000 - 2025 | spa |
| dc.date.accessioned | 2025-06-24T20:10:52Z | |
| dc.date.available | 2025-06-24T20:10:52Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Se presentan los avances de un proyecto de investigación de nivel doctoral que tiene como objetivo caracterizar las relaciones (similitudes y diferencias) que hay entre el Pensamiento Tecnológico (PT) y el Pensamiento Científico (PC) a partir del análisis y comparación cuantitativa de las señales encefalográficas (EEG) que se producen en 28 estudiantes de Ciclo 4 de educación básica secundaria al resolver pruebas sobre Actividades Tecnológicas Escolares (ATE), Actividades Científicas Escolares (ACE) y Actividades Tecno-científicas Escolares (ATCE). Al respecto, se diseñaron, validaron e implementaron 12 actividades, cuatro por cada tipo de pensamiento. Los registros se analizan a nivel de sensor y de fuente mediante técnicas cuantitativas y estadísticas para establecer las relaciones entre los tipos de pensamiento estudiados. De los resultados encontrados se destaca que el PC activa predominantemente áreas auditivas y somatosensoriales, vinculadas al diálogo interno, la formulación de hipótesis y la planificación ejecutiva, mientras que el PT presenta mayor activación en áreas visuales y parietales, relacionadas con el procesamiento visomotor y la memoria de trabajo espacial. Por su lado, las ATCE combinan ambos patrones, reflejando un procesamiento cognitivo integrado que conecta información sensorial, visual y ejecutiva. | spa |
| dc.description.abstractenglish | The advances of a doctoral-level research project are presented, aiming to characterize the relationships (similarities and differences) between Technological Thinking (TT) and Scientific Thinking (ST) through the quantitative analysis and comparison of electroencephalographic (EEG) signals produced by 28 students in Cycle 4 of education when solving tests on School Technological Activities (STA), School Scientific Activities (SSA), and School Techno-Scientific Activities (STSA). To this end, 12 activities were designed, validated, and implemented, with 4 for each type of thinking. The records are analyzed at the sensor and source levels using quantitative and statistical techniques to establish relationships between the studied types of thinking. In the context of a partial analysis of an activity for each type of thinking, the dorsolateral prefrontal area is highlighted as a common area for TT, ST, and TT-ST. On the other hand, the dominance in the activation of lateral cortical areas is emphasized for both TT and TT-ST compared to ST. Among the findings, it is noteworthy that the left lateral area and the left inferior area are activated for both ST and TT-ST but not for TT. | eng |
| dc.description.degreelevel | Doctorado | spa |
| dc.description.degreename | Doctor en Educación | spa |
| dc.description.researcharea | Neuroeducación | spa |
| dc.format | spa | |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | instname:Universidad Pedagógica Nacional | spa |
| dc.identifier.reponame | reponame: Repositorio Institucional UPN | spa |
| dc.identifier.repourl | repourl: http://repositorio.pedagogica.edu.co/ | |
| dc.identifier.uri | http://hdl.handle.net/20.500.12209/21291 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Pedagógica Nacional | spa |
| dc.publisher.faculty | Doctorado en Educación | spa |
| dc.publisher.program | Doctorado Interinstitucional en Educación | spa |
| dc.relation.references | Aguirre, R. y Moreira, K. (2015). Lenguaje y pensamiento. En A. Vásquez (Ed.), Manual de Introducción a la Psicología Cognitiva. UdelaR. | spa |
| dc.relation.references | Albornoz, M. (1999). Ciencia, la frontera sin fin Un informe al presidente, julio de 1945. Redes, VI(14), 89–156. http://iec.unq.edu.ar/index.php/es/publicaciones/revista-redes/numeros-anteriores/item/67-redes-%E2%80%93-revista-de-estudios-sociales-de-la-ciencia- | spa |
| dc.relation.references | Alderson-Day, B., Moffatt, J., Bernini, M., Mitrenga, K., Yao, B., y Fernyhough, C. (2020). Processing speech and thoughts during silent reading: Direct reference effects for speech by fictional characters in voice-selective auditory cortex and a theory-of-mind network. Journal of Cognitive Neuroscience, 32(9), 1637-1653. https://doi.org/10.1162/jocn_a_01571 | spa |
| dc.relation.references | Alderson-Day, B., Weis, S., McCarthy-Jones, S., Moseley, P., Smailes, D., y Fernyhough, C. (2016). The brain’s conversation with itself: Neural substrates of dialogic inner speech. Social Cognitive and Affective Neuroscience, 11(1), 110–120. https://doi.org/10.1093/scan/nsv094 | spa |
| dc.relation.references | Arenas, A., Ortiz, C. y Álvarez, L. (2005). Transferencia del conocimiento tecnológico al aula: estructuración del pensamiento tecnológico mediante la enseñanza del diseño. Revista UIS Ingenierías, 4(2), 129–138. https://www.redalyc.org/articulo.oa?id=553756895003 | spa |
| dc.relation.references | Baars, B. J. y Gage, N. M. (2010). Cognition, brain and consciousness: introduction to cognitive neuroscience. Elsevier. https://doi.org/10.1016/C2009-0-01556- | spa |
| dc.relation.references | Babini, J. (1947). Origen y naturaleza de la ciencia. Espasa Calpe | spa |
| dc.relation.references | Báez, O. (2021). Antología de ensayos de ciencias de la vida. Periódico Opción. | spa |
| dc.relation.references | Bardige, K. y Russell, M. (2014). Collections: Un plan de estudios centrado en el método STEM. Heritage Museums & Gardens Inc. | spa |
| dc.relation.references | Baker, C. M., Burks, J. D., Briggs, R. G., Conner, A. K., Glenn, C. A., Morgan, J. P., Stafford, J., Sali, G., McCoy, T. M., Battiste, J. D., O'Donoghue, D. L., y Sughrue, M. E. (2018a). A connectomic atlas of the human cerebrum-chapter 2: the lateral frontal lobe. Operative Neurosurgery (Hagerstown, Md.), 15(suppl_1), S10–S74. https://doi.org/10.1093/ons/opy254 | spa |
| dc.relation.references | Baker, C. M., Burks, J. D., Briggs, R. G., Sheets, J. R., Conner, A. K., Glenn, C. A., Sali, G., McCoy, T. M., Battiste, J. D., O'Donoghue, D. L., y Sughrue, M. E. (2018b). A connectomic atlas of the human cerebrum-chapter 3: the motor, premotor, and sensory cortices. Operative Neurosurgery (Hagerstown, Md.), 15(suppl_1), S75–S121. https://doi.org/10.1093/ons/opy256 | spa |
| dc.relation.references | Baker, C. M., Burks, J. D., Briggs, R. G., Stafford, J., Conner, A. K., Glenn, C. A., Sali, G., McCoy, T. M., Battiste, J. D., O'Donoghue, D. L., y Sughrue, M. E. (2018c). A connectomic atlas of the human cerebrum-chapter 4: the medial frontal lobe, anterior cingulate gyrus, and orbitofrontal cortex. Operative Neurosurgery (Hagerstown, Md.), 15(suppl_1), S122–S174. https://doi.org/10.1093/ons/opy257 | spa |
| dc.relation.references | Baker, C. M., Burks, J. D., Briggs, R. G., Conner, A. K., Glenn, C. A., Robbins, J. M., Sheets, J. R., Sali, G., McCoy, T. M., Battiste, J. D., O'Donoghue, D. L., y Sughrue, M. E. (2018d). A connectomic atlas of the human cerebrum-chapter 5: the insula and opercular cortex. Operative Neurosurgery (Hagerstown, Md.), 15(suppl_1), S175–S244. https://doi.org/10.1093/ons/opy259 | spa |
| dc.relation.references | Baker, C. M., Burks, J. D., Briggs, R. G., Milton, C. K., Conner, A. K., Glenn, C. A., Sali, G., McCoy, T. M., Battiste, J. D., O'Donoghue, D. L., y Sughrue, M. E. (2018f). A connectomic atlas of the human cerebrum-chapter 6: the temporal lobe. Operative Neurosurgery (Hagerstown, Md.), 15(suppl_1), S245–S294. https://doi.org/10.1093/ons/opy260 | spa |
| dc.relation.references | Baker, C. M., Burks, J. D., Briggs, R. G., Conner, A. K., Glenn, C. A., Taylor, K. N., Sali, G., McCoy, T. M., Battiste, J. D., O'Donoghue, D. L., y Sughrue, M. E. (2018g). A connectomic atlas of the human cerebrum-chapter 7: the lateral parietal lobe. Operative Neurosurgery (Hagerstown, Md.), 15(suppl_1), S295–S349. https://doi.org/10.1093/ons/opy261 | spa |
| dc.relation.references | Baker, C. M., Burks, J. D., Briggs, R. G., Conner, A. K., Glenn, C. A., Manohar, K., Milton, C. K., Sali, G., McCoy, T. M., Battiste, J. D., O'Donoghue, D. L., y Sughrue, M. E. (2018h). A connectomic atlas of the human cerebrum-chapter 8: the posterior cingulate cortex, medial parietal lobe, and parieto-occipital sulcus. Operative Neurosurgery (Hagerstown, Md.), 15(suppl_1), S350–S371. https://doi.org/10.1093/ons/opy262 | spa |
| dc.relation.references | Baker, C. M., Burks, J. D., Briggs, R. G., Stafford, J., Conner, A. K., Glenn, C. A., Sali, G., McCoy, T. M., Battiste, J. D., O'Donoghue, D. L., y Sughrue, M. E. (2018i). A connectomic atlas of the human cerebrum-Chapter 9: The occipital lobe. Operative Neurosurgery (Hagerstown, Md.), 15(suppl_1), S372–S406. https://doi.org/10.1093/ons/opy263 | spa |
| dc.relation.references | Barsalou L. W. (2008). Grounded cognition. Annual review of psychology, 59, 617–645. https://doi.org/10.1146/annurev.psych.59.103006.093639 | spa |
| dc.relation.references | Bartolo, A., Daumuller, M., Della Sala, S. y Goldenberg, G. (2007). Relationship between object-related gestures and the fractionated object knowledge system. Behavioural Neurology, 18, 143–147. | spa |
| dc.relation.references | Brainstorm. (n.d.). Source estimation. Neuroimage. https://neuroimage.usc.edu/brainstorm/Tutorials/SourceEstimation | spa |
| dc.relation.references | Bernaud, J. L., Priou, P. y Simonnet, R. (1994). Batterie multifactorielle d’aptitudes [Multifactorial Assessment Battery]. du Centre de Psychologie Appliquée. | spa |
| dc.relation.references | Bourne, L., Ekastrand, B. y Dominowski, R. (1975). Psicologia del pensamiento. Trillas. | spa |
| dc.relation.references | Bunge, M. A. (1997). La ciencia: su método y su filosofía. Siglo Veinte | spa |
| dc.relation.references | Bunge, M. A. (1999). Las ciencias sociales en discusión. Editorial Sudamericana. | spa |
| dc.relation.references | Bunge, M. A. (2002). Epistemología (tercera). siglo veintiuno editores. | spa |
| dc.relation.references | Buxbaum, L. y Saffran, E. (2002). Knowledge of object manipulation and object function: dissociations in apraxic and nonapraxic subject. Brain and Language, 82, 179–199 | spa |
| dc.relation.references | Buxbaum, L., Sirigu, A., Schwartz, M. y Klatzky, R. (2003). Cognitive representations of hand posture in ideomotor apraxia. Neuropsychologia, 41, 1091–1113. | spa |
| dc.relation.references | Buxbaum, L. J., Johnson-Frey, S. H., & Bartlett-Williams, M. (2005a). Deficient internal models for planning hand-object interactions in apraxia. Neuropsychologia, 43(6), 917–929. https://doi.org/10.1016/j.neuropsychologia.2004.09.006 | spa |
| dc.relation.references | Camelo, S., Rojas, D., Castro, R. y Mejia, A. (2015). Registro de la actividad eléctrica cerebral de la atención implicada en la conducción bajo el efecto del alcohol. Perspect. Psicol., 11(2), 217–233. | spa |
| dc.relation.references | Cárdena, G. A. (2002). Diccionario de Ciencias Económico Administrativas (3a edición). CUCEA. | spa |
| dc.relation.references | Cárdenas, E. (2013). Pensamiento Tecnológico en una muestra de estudiantes del área de Tecnología e Informática Assessment of Technological Thought Attributes in a Sample of Students from the Technology and Informatics Field. Informador Técnico, 77, p 125-135. | spa |
| dc.relation.references | Centro de Estudios Sociales y de Opinión Pública. (2006). “Definición” en Ciencia y Tecnología. http://archivos.diputados.gob.mx/Centros_Estudio/Cesop/Comisiones/d_cyt.htm | spa |
| dc.relation.references | Chalmers, A. F. (2000). ¿Qué es esa cosa llamada ciencia? (3.ª ed. corregida y aumentada). Siglo XXI Editores. | spa |
| dc.relation.references | Chaquea, D. y Chamorro, C. D. (2013). Aproximación conceptual de técnica y tecnología en un marco de desarrollo de proyectos. Revista Nexus Comunicación, 13(1), 148–173. https://doi.org/10.25100/nc.v1i13.766 | spa |
| dc.relation.references | Congedo, M., Lubar, J. y Joffe, D. (2004). Low-resolution electromagnetic tomography neurofeedback. IEEE, 12(4), 387–397. https://doi.org/10.1109/TNSRE.2004.840492 | spa |
| dc.relation.references | Comité Internacional de Bioética de la UNESCO. (2022). Cuestiones éticas de la neurotecnología. Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO). https://doi.org/10.54678/QNKB6229 | spa |
| dc.relation.references | Cupani, A. (2006). La peculiaridad del conocimiento tecnológico. Scientiae Studia, 4, 353–371. https://www.scielo.br/j/ss/a/STXgdYmmHXL4Qjcb5xYqrDm/?lang=es | spa |
| dc.relation.references | Daly, I., Bourgaize, J. y Vernitski, A. (2019). Mathematical mindsets increase student motivation: Evidence from the EEG. Trends in Neuroscience and Education, 15, 18–28. https://doi.org/10.1016/j.tine.2019.02.005 | spa |
| dc.relation.references | Dampier, W. (1972). Historia de la Ciencia. Tecnos Editorial. | spa |
| dc.relation.references | Dan, A. y Reiner, M. (2017). Real time eeg based analysis of cognitive load enhance instructional analysis. Journal of Educational Data Mining, 9(2), 31–44. https://jedm.educationaldatamining.org/index.php/JEDM/article/view/160 | spa |
| dc.relation.references | De Vega, M. (1990). Introducción a la psicología cognitiva. Alianza Editorial. | spa |
| dc.relation.references | Dehaene, S. (2019). Cómo aprendemos (1a ed.). siglo veintiuno. | spa |
| dc.relation.references | Díaz, I. y García, M. (2011). Más allá del paradigma de la alfabetización . la adquisición de cultura científica como reto educativo. Formación Universitaria, 4(2), 3–14. https://doi.org/10.4067/S0718-50062011000200002 | spa |
| dc.relation.references | Dunbar, K. y Fugelsang, J. (2005a). Brain-based mechanisms underlying complex causal thinking. Neuropsychologia, 43(8), 1204–1213. https://doi.org/10.1016/j.neuropsychologia.2004.10.012 | spa |
| dc.relation.references | Dunbar, K. y Fugelsang, J. (2005b). Causal thinking in science: how scientists and students interpret the unexpected. En M. Gorman, R. Tweney, D. Gooding y A. Kincannon (Eds.), Scientific And Technological Thinking (pp. 57–79). Lawrence Erlbaum Associates. | spa |
| dc.relation.references | Dunbar, K. y Klahr, D. (2012). Scientific Thinking and Reasoning. En K. J. Holyoak y R. G. Morrison (Eds.), The Oxford Handbook of Thinking and Reasoning (Número April 2013, pp. 701–718). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199734689.001.0001 | spa |
| dc.relation.references | Dunbar, K. N. (2009). The biology of physics : what the brain reveals about our understanding of the physical world. AIP Conference Proceedings, 1179(1). https://doi.org/https://doi.org/10.1063/1.3266703 | spa |
| dc.relation.references | Dunbar, K. N. (2014). What scientific thinking reveals about the nature of cognition. January 2001. | spa |
| dc.relation.references | Edelman, G. M. (1992). Bright, air, brilliant fire: On the matter of the mind. Basic Books. | spa |
| dc.relation.references | Ellul, J. (2003). La edad de la técnica. Ediciones Octaedro. | spa |
| dc.relation.references | Federico, G., Reynaud, E., Navarro, J., Lesourd, M., Gaujoux, V., Lamberton, F., Ibarrola, D., Cavaliere, C., Alfano, V., Aiello, M., Salvatore, M., Seguin, P., Schnebelen, D., Brandimonte, M. A., Rossetti, Y. y Osiurak, F. (2022). The cortical thickness of the area PF of the left inferior parietal cortex mediates technical-reasoning skills. Scientific Reports |, 12, 11840. https://doi.org/10.1038/s41598-022-15587-8 | spa |
| dc.relation.references | Feenberg, A. (1999). Questioning technology. Routledge. | spa |
| dc.relation.references | Fugelsang, J. A., Roser, M. E., Corballis, P. M., Gazzaniga, M. S. y Dunbar, K. N. (2005). Brain mechanisms underlying perceptual causality. 24, 41–47. https://doi.org/10.1016/j.cogbrainres.2004.12.001 | spa |
| dc.relation.references | Fugelsang, J. y Dunbar, K. (2005). Scientific thinking and reasoning. En K. Holyoak y R. Morrison (Eds.), The Cambridge Handbook of Thinking and Reasoning (pp. 705–725). Cambridge University Press. | spa |
| dc.relation.references | Furman, M. (2016). Título del libro: Educar mentes curiosas: la formación del pensamiento científico y tecnológico en la infancia. En Espiral. Cuadernos Del Profesorado (Vol. 10, Número 20). Fundación Santillana. https://doi.org/10.25115/ecp.v10i20.1015 | spa |
| dc.relation.references | Gay, A. y Ferreras, M. A. (1997). La educacion tecnologica : aportes para su implementacion / Aquiles Gay, Miguel Angel Ferreras ; Ministerio de Cultura y Educacion. http://www.bibliotecadonbosco.com.ar/index.php?p=show_detail&id=7249&keywords= | spa |
| dc.relation.references | Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C. F., Jenkinson, M., Smith, S. M., & Van Essen, D. C. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536(7615), 171–178. https://doi.org/10.1038/nature18933 | spa |
| dc.relation.references | Goldenberg, G. y Hagmann, S. (1998). Tool use and mechan_ical problem solving in apraxia. Neuropsychologia, 36, 581–589. | spa |
| dc.relation.references | González, W. y Hernández, L. (2000). Tecnologia y tecnica: tres perspectivas. En Energia y computación (Vol. 9, Número 15, p. 7). http://bibliotecadigital.univalle.edu.co/xmlui/bitstream/handle/10893/1344/Tecnologia y tecnica.pdf?sequence=6 | spa |
| dc.relation.references | Grandchamp, R., Rapin, L., Perrone-Bertolotti, M., Pichat, C., Haldin, C., Cousin, E., Lachaux, J. P., Dohen, M., Perrier, P., Garnier, M., Baciu, M., & Lœvenbruck, H. (2019). The ConDialInt model: Condensation, dialogality, and intentionality dimensions of inner speech within a hierarchical predictive control framework. Frontiers in Psychology, 10, 2019. https://doi.org/10.3389/fpsyg.2019.02019 | spa |
| dc.relation.references | Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., Xanthopoulos, P., Sakkalis, V., & Vanrumste, B. (2008). Review on solving the inverse problem in EEG source analysis. Journal of NeuroEngineering and Rehabilitation, 5(1), 5-25. https://doi.org/10.1186/1743-0003-5-25 | spa |
| dc.relation.references | Halfin, H. H. (1973). Technology: A process approach. (Doctoral dissertation, West Virgina University, 1973) | spa |
| dc.relation.references | Hartmann, K., Goldenberg, G., Daumuller, M. y Hermsdorfer, J. (2005). It takes the whole brain to make a cup of coffee: the neuropsychology of naturalistic actions involving technical devices. Neuropsychologia, 43, 625–637. | spa |
| dc.relation.references | Heilman, K. M., Maher, L. M., Greenwald, M. L. y Rothi, L. J. (1997). Conceptual apraxia from lateralized lesions. Neurology, 49, 457–464. | spa |
| dc.relation.references | Hernández, L. (2020). La técnia moderna. reflexiones epistemológicas (1a). Colección Artes y Humanidades- Filosofia. https://doi.org/10.25100/peu.454 | spa |
| dc.relation.references | Hill, R. B. (1997). The design of an instrument to assess problem solving activities in technology education. Journal of Technology Education, 9(1) | spa |
| dc.relation.references | Hill, R. B. y Wicklein, R. C. (1999). A factor analysis of primary mental processes for technological problem solving. Journal of Industrial Teacher Education, 36(2). | spa |
| dc.relation.references | Hodges, J., Bozeat, S., Lambon Ralph, M., Patterson, K. y Spatt, J. (2000). The role of knowledge in object use: evidence from semantic dementia. Brain, 123, 1913–1925. | spa |
| dc.relation.references | Hodges, J., Spatt, J. y Patterson, K. (1999). ‘“What”’ and ‘“how”’: evidence for the dissociation of object knowledge and mechanical problem-solving skills in the human brain. Proceeding of the National Academy of Sciences of the USA, 96, 9444–9448. | spa |
| dc.relation.references | Holyoak, K. J. y Morrison, R. G. (2012). Thinking and reasoning: a reader’s guide. En K. J. Holyoak y R. G. Morrison (Eds.), The Oxford Handbook of Thinking and Reasoning (pp. 1–7). Oxford University Press. https://doi.org/10.1093/OXFORDHB/9780199734689.013.0001 | spa |
| dc.relation.references | Hund, E. (1997). Nature vs. nature: the feeling of vuja de. En R. J. Sternberg y E. Grigorenko (Eds.), Intelligence, Heredity, and Environment, Cambridge. Cambridge University Press. | spa |
| dc.relation.references | Ihde, D. (2017). Tecnologia e o mundo da vida: do jardim à terra (M. F. Bozatski, Trad.). Editora UFFS. https://books.scielo.org/id/zcvh9/pdf/ihde-9788564905610.pdf | spa |
| dc.relation.references | Jatoi, M. A., Kamel, N., Malik, A. S., y Faye, I. (2014a). EEG based brain source localization comparison of sLORETA and eLORETA. Australasian Physical & Engineering Sciences in Medicine, 37(4), 713-721. https://doi.org/10.1007/s13246-014-0297-4 | spa |
| dc.relation.references | Jatoi, M. A., Kamel, N., Malik, A. S., Faye, I., y Begum, T. (2014b). A survey of methods used for source localization using EEG signals. Biomedical Signal Processing and Control, 11, 42-52. https://doi.org/10.1016/j.bspc.2014.01.009 | spa |
| dc.relation.references | Kim, H.-P. (2010). Analysis of eeg activities of elementary school students in the process of technological problem solving. Journal of Korean Practical Arts Education, 16(3), 15–34. | spa |
| dc.relation.references | Kim, H.-P. (2011). Analysis of EEG Activities of High Students in the Process of Thinking of a Invention Problem. Revista de la Sociedad Coreana de Educación Técnica, 11(1), 128–144. | spa |
| dc.relation.references | Koslowski, B. (1996). Theory and evidence: Th e development of scientific reasoning. MIT Press. | spa |
| dc.relation.references | Kosslyn, S. M., Thompson, W. L., y Ganis, G. (2006). The case for mental imagery. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195179088.001.0001 | spa |
| dc.relation.references | Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96, 674–689. | spa |
| dc.relation.references | Kuhn, D. (2005). Education for thinking. Harvard University Press. | spa |
| dc.relation.references | Kuhn, D. y Franklin, S. (2006). The second decade: What develops (and how). En W. Damon y R. M. Lerner (Eds.), Handbook of child psychology (pp. 953–993). John Wiley & Sons. | spa |
| dc.relation.references | Ladriere, J. (1977). El reto de la racionalidad. Salamanca. Ediciones Sígueme. | spa |
| dc.relation.references | Liz, M. (1995). Conocer y actuar a través de la tecnología. En F. Brocano (Ed.), Nuevas meditaciones sobre la tecnología. Trotta. | spa |
| dc.relation.references | Maggio, M. (2018). Habilidades del siglo XXI : cuando el futuro es hoy - XIII Foro Latinoamericano de Eduación (1a ed.). Santillana. | spa |
| dc.relation.references | Magno, C. (2015). A Measure for Scientific Thinking. May. | spa |
| dc.relation.references | Malik, A. y Amin, H. (2017). Designing EEG Experiments for Studying the Brain: Design Code and Example Datasets. Academic Press. | spa |
| dc.relation.references | Manterola, C., Quiroz, G., Salazar, P. y García, N. (2019). Metodología de los tipos y diseños de estudio más frecuentemente utilizados en investigación clínica. Revista Médica Clínica Las Condes, 30(1), 36–49. https://doi.org/https://doi.org/10.1016/j.rmclc.2018.11.005 | spa |
| dc.relation.references | Martínez, C. (1993). Esbozo biográfico y bibliografía de Jorge Alberto Sabato. ADEST | spa |
| dc.relation.references | Masson, S., Potvin, P. y Riopel, M. (2012). Using fMRI to study conceptual change : Why and how ? International journal of environmental and science education, 7(January), 19–35. | spa |
| dc.relation.references | Mayer, R. E. (1983). Pensamiento. resolución de problemas y cognición. Paidós Ibérica. | spa |
| dc.relation.references | McComas, W. F. (2014). Scientific thinking skills. The Language of Science Education, 25(2003), 96–96. https://doi.org/10.1007/978-94-6209-497-0_86 | spa |
| dc.relation.references | MEN. (2008). Ser competente en tecnología: ¡una necesidad para el desarrollo! Orientaciones generales para la educación en tecnología (MEN). Ministra de educación Nacional. https://www.mineducacion.gov.co/1621/articles-340033_archivo_pdf_Orientaciones_grales_educacion_tecnologia.pdf | spa |
| dc.relation.references | Merchán, C. (2018). Orientaciones para el uso de estrategias didácticas en el desarrollo del pensamiento tecnológico. (1a ed.). Universidad Pedagógica y Tecnológica de Colombia (UPTC). | spa |
| dc.relation.references | Migueles, M., Tenorio, M., Felisberti, F., Palmero, F., Fuentes, I., Sebastián, M., Gallegos, M., Fernández, C., Piqueras, J., García, A., Breva, A., Aparici, M., Godoy, J. y Bertolotti, V. (2016). Manual de introducción a la psicología cognitiva (A. Vásquez (Ed.)). Unidad de Comunicación de la Universidad de la República. | spa |
| dc.relation.references | Miller, E. K., y Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167 | spa |
| dc.relation.references | Mills, C., Fridman, I., Soussou, W., Waghray, D., Olney, A. M. y D’Mello, S. K. (2017). Put your thinking cap on: Detecting cognitive load using EEG during learning. ACM International Conference Proceeding Series, 80–89. https://doi.org/10.1145/3027385.3027431 | spa |
| dc.relation.references | Molina del Río, J., Guevara, M., Hernández, M., Hidalgo, R. y Cruz, M. (2019). EEG correlation during the solving of simple and complex logical–mathematical problems. Cognitive, Affective and Behavioral Neuroscience, 19(4), 1036–1046. https://doi.org/10.3758/s13415-019-00703-5 | spa |
| dc.relation.references | Morrison, R. y Knowlton, B. (2012). Neurocognitive methods in higher cognition. En Th e Oxford Handbook of Th inking and Reasoning (pp. 61–89). Oxford | spa |
| dc.relation.references | Mumford, L. (1994). Técnica y civilización. Alianza Editorial. | spa |
| dc.relation.references | Muñoz, E. J. (2014). Clasificación de patrones de imaginación motora en una interfaz cerebro computador de bajo costo usando software libre [Universidad de Pereira]. http://repositorio.utp.edu.co/dspace/handle/11059/4635 | spa |
| dc.relation.references | Naciones Unidas. (2018). La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe (LC/G.2681-P/Rev.3). Comisión Económica para América Latina y el Caribe (CEPAL). | spa |
| dc.relation.references | Niiniluoto, I. (2013). Ciencia frente a tecnología: ¿diferencia o identidad? Arbor, 157, 285–299. https://doi.org/10.3989/arbor.1997.i620.1818 | spa |
| dc.relation.references | Nuwer, M. (1997). Assessment of digital EEG, quantitative EEG, and EEG brain mapping. Special Article-Neurology, 49, 277–292. | spa |
| dc.relation.references | O’Donohue, W., Kitchener, R. y Gorman, M. (2014). Psychology of science. En The Philosophy of Psychology. https://doi.org/10.4135/9781446279168.n4 | spa |
| dc.relation.references | OCDE. (1995). The Measurement of Scientific and Technological Activities Manual on the Measurement of Human Resources Devoted To S&T: Canberra Manual (Número 95). OECD. | spa |
| dc.relation.references | Ochipa, C., Rothi, L. y Heilman, K. (1989). Ideational apraxia: A deficit in tool selection and use. Annals of Neurology, 25, 190–193. | spa |
| dc.relation.references | Ochipa, C., Rothi, L. y Heilman, K. (1992). Conceptual apraxia in Alzheimer’s disease. Brain, 115, 1061–1107. | spa |
| dc.relation.references | Orovas, C., Sapounidis, T., Volioti, C., & Keramopoulos, E. (2025). EEG in education: A scoping review of hardware, software, and methodological aspects. Sensors, 25(1), 182. https://doi.org/10.3390/s25010182 | spa |
| dc.relation.references | Osiurak, F. y Badets, A. (2016). Tool use and affordance: manipulation-based versus reasoning-based approaches. Psychol. Rev., 123, 534–568. https://doi.org/10.1037/ rev0000027 | spa |
| dc.relation.references | Osiurak, F., Jarry, C., Allain, P., Aubin, G., Etcharry-Bouyx, F. y Richard, I. (2009). Unusual use of objects after unilateral brain damage: the technical reasoning model. Cortex, 45, 769–783. https://doi.org/10.1016/j.cortex.2008. 06.013 | spa |
| dc.relation.references | Osiurak, F., Jarry, C. y Le Gall, D. (2010). Grasping the affordances, understanding the reasoning: toward a dialectical theory of human tool use. Psychol. Rev., 117, 517–540. https://doi.org/10.1037/a0019004 | spa |
| dc.relation.references | Osiurak, F., Lesourd, M., Navarro, J. y Reynaud, E. (2020). Technition: when tools come out of the closet. Perspectives on psychological science : a journal of the Association for Psychological Science, 15(4), 880–897. https://doi.org/10.1177/1745691620902145 | spa |
| dc.relation.references | Papuc, D., Bălan, O., Dascălu, M. I., Moldoveanu, A. y Morar, A. (2017). Brain activation and cognitive load during EEG measured creativity tasks accompanied by relaxation music. CHIRA 2017 - Proceedings of the International Conference on Computer-Human Interaction Research and Applications, Chira, 156–162. https://doi.org/10.5220/0006511201560162 | spa |
| dc.relation.references | Paris, J., Ricardo, A. y Rymond, D. (2019). Desarrollo y crecimiento en la niñez (A. Johnson (Ed.)). College of the Canyons. https://espanol.libretexts.org/@go/page/49970 | spa |
| dc.relation.references | Park, S., Song, K. y Kim, S. (2015). EEG analysis for computational thinking based education effect on the learners ’ cognitive load. Proceedings of the Applied Computer and Applied Computational Science (ACACOS’15), 38–43. | spa |
| dc.relation.references | Pascual-Marqui, R. D. (1999). Review of Methods for Solving the EEG Inverse Problem. International Journal of Bioelectromagnetism, 1(1), 75–86. https://doi.org/10.1186/1743-0003-5-25 | spa |
| dc.relation.references | Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods and findings in experimental and clinical pharmacology, 24 Suppl D, 5–12 | spa |
| dc.relation.references | Pascual-Marqui, R. D. (2007a). LORETA: low resolution brain electromagnetic tomography. The KEY Institute for Brain-Mind Research. | spa |
| dc.relation.references | Pascual-Marqui, R. D. (2007b). Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: Exact, zero error localization. Math. Physics Biol. Physics Neurons Cogn., 0710. | spa |
| dc.relation.references | Pascual-Marqui, R. D., Michel, C. M. y Lehmann, D. (1994). Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18(1), 49–65. https://doi.org/10.1016/0167-8760(84)90014-X | spa |
| dc.relation.references | Pascual Marqui, R. D., Pascual-Montano, A. y Lehmann, D. (2006). Exact low resolution brain electromagnetic tomography (eLORETA). Neuroimage, 31. | spa |
| dc.relation.references | Pearson, J., Naselaris, T., Holmes, E. A., y Kosslyn, S. M. (2015). Mental imagery: Functional mechanisms and clinical applications. Trends in Cognitive Sciences, 19(10), 590–602. https://doi.org/10.1016/j.tics.2015.08.003 | spa |
| dc.relation.references | Perrone-Bertolotti, M., Rapin, L., Lachaux, J. P., Baciu, M., y Lœvenbruck, H. (2014). What is that little voice inside my head? Inner speech phenomenology, its role in cognitive performance, and its relation to self-monitoring. Behavioural brain research, 261, 220–239. https://doi.org/10.1016/j.bbr.2013.12.034 | spa |
| dc.relation.references | Poincaré, H. (1905). Ciencia e hipotesis. The Walter Scott Publishing Company. | spa |
| dc.relation.references | Quantitative EEG (qEEG) | Psychology Glossary | alleydog.com. (s/f). Recuperado el 4 de mayo de 2022, de https://alleydog.com/glossary/cite-my-term.php?term=Quantitative+EEG+%28qEEG%29 | spa |
| dc.relation.references | Postman, N. (1992). Technopoly: The surrender of culture to technology. Knopf | spa |
| dc.relation.references | Quintanilla, M. A. (2005). Tecnología : un enfoque filosófico y otros ensayos de filosofía de la tecnología. Fondo de Cultura Económica. | spa |
| dc.relation.references | Ramos-Argüelles, F., Morales, G., Egozcue, S., Pabón, R. M., & Alonso, M. T. (2009). Técnicas básicas de electroencefalografía: principios y aplicaciones clínicas. Anales del Sistema Sanitario de Navarra, 32(Supl. 3), 69–82. http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272009000600006&lng=es&tlng=es | spa |
| dc.relation.references | Rodríguez, G. (1998). Ciencia , Tecnología y Sociedad : una mirada desde la Educación en Tecnología. Revista Iberoamericana de Educación, 18. https://rieoei.org/historico/oeivirt/rie18a05.htm | spa |
| dc.relation.references | Rodríguez, M. y Mendivelso, F. (2018). Diseño de investigación de corte transversal. Revista Médica Sanitas, 21, 141–146. https://doi.org/10.26852/01234250.20 | spa |
| dc.relation.references | Romo-Saltos, L. (1984). Ciencia: Filosofía y Método. Editorial Universitaria UCE. | spa |
| dc.relation.references | Rosser, R. (1999). Scientific Thinking. En R. W. & F. Kei (Ed.), The MIT Encyclopedia of Cognitive Science (pp. 730–733). Cambridge MA: MIT Press. | spa |
| dc.relation.references | abato, J. A. y Mackenzie, M. (1982). La producción de tecnología : autónoma o transnacional. Nueva Imagen. | spa |
| dc.relation.references | Salkind, N. j. (1999). Métodos de investigación (3ra ed.). Prentice hall. | spa |
| dc.relation.references | Seung-Kwon, N. (2010). The Development of the Technological Thinking Disposition Measurement Instrument. Chungnam National. https://doi.org/https://doi.org/10.1016/B978-0-12-374534-7.00004-6 | spa |
| dc.relation.references | Sherlin, L. H. (2009). Diagnosing and treating brain function through the use of low resolution brain electromagnetic tomography (LORETA). Introduction to Quantitative EEG and Neurofeedback, 83–102. https://doi.org/10.1016/B978-0-12-374534-7.00004-6 | spa |
| dc.relation.references | Spatt, J., Bak, T., Bozeat, S., Patterson, K., & Hodges, J. R. (2002). Apraxia, mechanical problem solving and semantic knowledge: Contributions to object usage in corticobasal degeneration. Journal of Neurology, 249, 601–608. https://doi.org/10.1007/s004150200094 | spa |
| dc.relation.references | Simon, H. A. (1966). Scientific discovery and the psychology of problem solving. Mind and cosmos, 22–40. | spa |
| dc.relation.references | Simon, H. A. (1977). Models of discovery. | spa |
| dc.relation.references | Simpson, L. C. (1995). Technology, time, and the conversations of modernity. Routledge. https://www.routledge.com/Technology-Time-and-the-Conversations-of-Modernity/Simpson/p/book/9780415907729 | spa |
| dc.relation.references | Skekun. (1981). Technical Thinking And Ways of Developing it (Vol. 23, Números 2–3, pp. 149–191). Soviet Education. https://doi.org/10.2753/RES1060-9393230203149 | spa |
| dc.relation.references | Sternberg, R. J. (1997). Thinking Styles. Cambridge University Press. | spa |
| dc.relation.references | Stevens, C. E. y Zabelina, D. L. (2019). Creativity comes in waves: an EEG-focused exploration of the creative brain. Current Opinion in Behavioral Sciences, 27, 154–162. https://doi.org/10.1016/j.cobeha.2019.02.003 | spa |
| dc.relation.references | Strimel, G. (2014). Engineering design: a cognitive process approach [Old Dominion University]. En STEMPS Theses & Dissertations. https://doi.org/10.25777/zzbj-b61 | spa |
| dc.relation.references | el, F., Baillet, S., Mosher, J. C., Pantazis, D., y Leahy, R. M. (2011). Brainstorm: A user-friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience, 2011, Article ID 879716. https://doi.org/10.1155/2011/879716 | spa |
| dc.relation.references | Tadel, F., Bock, E., Niso, G., Mosher, J. C., Cousineau, M., Pantazis, D., Leahy, R. M., & Baillet, S. (2019). MEG/EEG group analysis with Brainstorm. Frontiers in Neuroscience, 13, 76. https://doi.org/10.3389/fnins.2019.00076 | spa |
| dc.relation.references | Tadel, F., Bock, E., Mosher, J. C., Leahy, R., & Baillet, S. (s.f.). Head model. Brainstorm. Recuperado el 8 de agosto de 2024, de https://neuroimage.usc.edu/brainstorm/Tutorials/HeadModel | spa |
| dc.relation.references | Talairach, J. y Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system : an approach to cerebral imaging. G. Thieme. | spa |
| dc.relation.references | UNESCO. (2022). Reimaginar juntos nuestros futuros: un nuevo contrato social para la educación. UNESCO. | spa |
| dc.relation.references | Thomas, M. S. C., Ansari, D., y Knowland, V. C. P. (2019). Annual Research Review: Educational neuroscience: progress and prospects. Journal of Child Psychology and Psychiatry, 60(4), 477–492. https://doi.org/10.1111/jcpp.12973 | spa |
| dc.relation.references | Torrijos-Muelas, M., González-Víllora, S., y Bodoque-Osma, A. R. (2021). La persistencia de los neuromitos en los entornos educativos: una revisión sistemática. Frontiers in Psychology, 11, 591923. https://doi.org/10.3389/fpsyg.2020.591923 | spa |
| dc.relation.references | Vann, S., Aggleton, J., y Maguire, E. (2009). What does the retrosplenial cortex do? Nature Reviews Neuroscience, 10(11), 792–802. https://doi.org/10.1038/nrn2733no | spa |
| dc.relation.references | Vaesen, K. (2012). The cognitive bases of human tool use. Behavioral and Brain Sciences, 35(4), 203–218. https://doi.org/10.1017/S0140525X11001452 | spa |
| dc.relation.references | Vasquez-Echeverria, A. (2016). Manual de introducción a la psicología cognitiva. UCUR. Departamento de Publicaciones. | spa |
| dc.relation.references | Villegas, B. M. y Rojas, M. G. (2018). Interfaz cerebro ordenador BCI mediante el uso de Emotiv Insight. RevActaNova, 9(1), 3–31. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1683-07892019000100002&nrm=iso | spa |
| dc.relation.references | Vincenti, W. G. (1990). What engineers know and how they know it. The John Hopkins University Press. | spa |
| dc.relation.references | Wicklein, R. C. y Rojewski, J. W. (1999). Toward a “Unified Curriculum Framework” for Technology Education. Journal of Industrial Teacher Education, 36(4). | spa |
| dc.relation.references | Wilkening, F. y Sodian, B. (2005). Scientificc reasoning in young children: introduction. Swiss Journal of Psychology, 64, 137–139. | spa |
| dc.relation.references | Wu, J. (2005). Piensa ahora con Da Vinci (R. Bangseung, Trad., 2006). Aracne. | spa |
| dc.relation.references | Xie, W., & Richards, J. E. (2022). Cortical source localization in EEG frequency analysis. In P. A. Gable, M. W. Miller, & E. M. Bernat (Eds.), The Oxford handbook of EEG frequency (Oxford Library of Psychology). Oxford Academic. https://doi.org/10.1093/oxfordhb/9780192898340.013.16 | spa |
| dc.relation.references | Yao, B., Belin, P., y Scheepers, C. (2011). Silent reading of direct versus indirect speech activates voice-selective areas in the auditory cortex. Journal of Cognitive Neuroscience, 23(11), 3146-3152. https://doi.org/10.1162/jocn_a_00022 | spa |
| dc.relation.references | Zhou, Z., Hu, L., Sun, C., Li, M., Guo, F. y Zhao, Q. (2019). The effect of Zhongyong thinking on remote association thinking: An EEG study. Frontiers in Psychology, 10(FEB), 1–9. https://doi.org/10.3389/fpsyg.2019.00207 | spa |
| dc.relation.references | Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172–223. https://doi.org/10.1016/j.dr.2006.12.001 | spa |
| dc.relation.references | Zimmerman, C. y Croker, S. (2014). A prospective cognition analysis of scientific thinking and the implications for teaching and learning science. Journal of Cognitive Education and Psychology, 13(2), 245–257. https://doi.org/10.1891/1945-8959.13.2.245 | spa |
| dc.rights.access | Acceso abierto | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | |
| dc.rights.creativecommons | Attribution-NonCommercial-NoDerivatives 4.0 International | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject | Pensamiento científico | spa |
| dc.subject | Pensamiento tecnológico | spa |
| dc.subject | Cognición | spa |
| dc.subject | Neurología | spa |
| dc.subject | Electroencefalografía | spa |
| dc.subject.keywords | Scientific thinking | eng |
| dc.subject.keywords | Technological thinking | eng |
| dc.subject.keywords | Cognition | eng |
| dc.subject.keywords | Neurology | eng |
| dc.subject.keywords | Electroencephalography | eng |
| dc.title | Pensamientos científico y tecnológico : un estudio de sus relaciones mediante electroencefalografía cuantitativa (QEEG) en estudiantes de secundaria. | spa |
| dc.title.translated | Scientific and Technological Thinking : A Study of Their Relationship Using Quantitative Electroencephalography (QEEG) in High School Students. | eng |
| dc.type | info:eu-repo/semantics/doctoralThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_db06 | eng |
| dc.type.driver | info:eu-repo/semantics/masterThesis | eng |
| dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | |
| dc.type.local | Monografía - Doctorado | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dc.type.version | http://purl.org/coar/version/c_ab4af688f83e57aa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Pensamiento científico y tecnológico.pdf
- Tamaño:
- 3.53 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 2 de 2
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- 202503780115363-06 JUN 25 JULIAN TORRES.pdf
- Tamaño:
- 466.28 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- LICENCIA APROBADA
